Графика - Портал рукоделия

Важнейшие абиотические факторы. Свет

Свет - это первичный источник энергии, без которого невозможна жизнь на Земле. Он участвует в фотосинтезе, обеспечивая создание растительностью Земли органических соединений из неорганических, и в этом его важнейшая энергетическая функция. Но в фотосинтезе участвует лишь часть спектра в пределах от 380 до 760 нм, которую называют областью физиологически активной радиации (ФАР). Внутри нее для фотосинтеза наибольшее значение имеют красно-оранжевые лучи (600-700 нм) и фиолетово-голубые (400-500 нм), наименьшее - желто-зеленые (500-600 нм). Последние отражаются, что и придает хлорофиллоносным растениям зеленую окраску. Однако свет не только энергетический ресурс, но и важнейший экологический фактор, весьма существенно влияющий на биоту в целом и на адаптационные процессы и явления в организмах.

За пределами видимого спектра и ФАР остаются инфракрасная (ИК) и ультрафиолетовая (УФ) области. УФ-излуче-ние несет много энергии и обладает фотохимическим воздействием - организмы к нему очень чувствительны. ЙК-излучение обладает значительно меньшей энергией, легко поглощается водой, но некоторые сухопутные организмы используют его для поднятия температуры тела выше окружающей.

Важное значение для организмов имеет интенсивность освещения. Растения по отношению к освещенности подразделяются на светолюбивые (гелиофиты), тенелюбивые (сциофиты) и теневыносливые.

Первые две группы обладают разными диапазонами толерантности в пределах экологического спектра освещенности. Яркий солнечный свет - оптимум гелиофитов (луговые травы, хлебные злаки, сорняки и др.), слабая освещенность - оптимум тенелюбивых (растения таежных ельников, лесостепных дубрав, тропических лесов). Первые не выносят тени, вторые - яркого солнечного света.

Теневыносливые растения имеют широкий диапазон толерантности к свету и могут развиваться как при яркой освещенности, так и в тени.

Свет имеет большое сигнальное значением вызывает регуляторные адаптации организмов. Одним из самых надежных сигналов, регулирующих активность организмов во времени, является длина дня - фотопериод. Фотопериодизм как явление - это реакция организма на сезонные изменения длины дня.

Длина дня в данном месте, в данное время года всегда одинакова, что позволяет растению и животному определиться на данной широте со временем года, т. е. временем начала цветения, созревания и т. п. Иными словами, фотопериод - это некое «реле времени», или «пусковой механизм», включающий последовательность физиологических процессов в живом организме.

Фотопериодизм нельзя отождествлять с обычными внешними суточными ритмами, обусловленными просто сменой дня и ночи. Однако суточная цикличность жизнедеятельности у животных и человека переходит во врожденные свойства вида, т. е. становится внутренними (эндогенными) ритмами.

Но в отличие от изначально внутренних ритмов их продолжительность может не совпадать с точной цифрой - 24 часа - на 15-20 минут, и в связи с этим, такие ритмы называют циркадными (в переводе - близкие к суткам).Эти ритмы помогают организму чувствовать время, и эту способность называют «биологическими часами». Они помогают птицам при перелетах ориентироваться по солнцу и вообще ориентируют организмы в более сложных ритмах природы.

Фотопериодизм, хотя и наследственно закреплен, проявляется лишь в сочетании с другими факторами, например температурой: если в день X холодно, то растение зацветает позже, или в случае с вызреванием - если холод наступает раньше дня X, то, скажем, картофель дает низкий урожай, и т. п. В субтропической и тропической зоне, где длина дня по сезонам года меняется мало, фотопериод не может служить важным экологическим фактором - на смену ему приходит чередование засушливых и дождливых сезонов, а в высокогорье главным сигнальным фактором становится температура.

Цель : раскрыть особенности абиотических факторов среды и рассмотреть их влияние на живые организмы.

Задачи : познакомить учащихся с экологическими факторами среды; раскрыть особенности абиотических факторов, рассмотреть влияние температуры, света и увлажнения на живые организмы; выделить различные группы живых организмов в зависимости от влияния на них разных абиотического фактора; выполнить практическое задание по определению групп организмов, в зависимости от абиотического фактора.

Оборудование : компьютерная презентация, задания по группам с картинками растений и животных, практическое задание.

ХОД УРОКА

Все живые организмы, населяющие Землю, испытывают влияние экологических факторов среды.

Экологические факторы – это отдельные свойства или элементы среды, воздействующие прямо или косвенно на живые организмы, хотя бы на протяжении одной из стадий индивидуального развития. Экологические факторы многообразны. Существует несколько квалификаций, в зависимости от подхода. Это по влиянию на жизнедеятельность организмов, по степени изменчивости во времени, по длительности действия. Рассмотрим классификацию экологических факторов, основанную на их происхождении.

Мы рассмотрим влияние первых трех абиотических факторов среды, так как их влияние более значительно – это температура, свет и влажность.

Например, у майского жука личиночная стадия проходит в почве. На него влияют абиотические факторы среды: почва, воздух, косвенно влажность, химический состав почвы – совсем не влияет свет.

Например, бактерии способны выжить в самых экстремальных условиях – их находят в гейзерах, сероводородных источниках, очень соленой воде, на глубине Мирового океана, очень глубоко в почве, во льдах Антарктиды, на самых высоких вершинах (даже Эвересте 8848 м), в телах живых организмов.

ТЕМПЕРАТУРА

Большинство видов растений и животных приспособлены к довольно узкому диапазону температур. Некоторые организмы, особенно в состоянии покоя или анабиоза способны выдерживать довольно низкие температуры. Колебание температуры в воде обычно меньше, чем на суше, поэтому пределы устойчивости к температуре у водных организмов хуже, чем у наземных. От температуры зависит интенсивность обмена веществ. В основном организмы живут при температуре от 0 до +50 на поверхности песка в пустыни и до – 70 в некоторых областях Восточной Сибири. Средний диапазон температур находится в пределах от +50 до –50 в наземных местообитаниях и от +2 до +27 – в Мировом океане. Например, микроорганизмы выдерживают охлаждение до –200, отдельные виды бактерий и водорослей могут жить и размножаться в горячих источниках при температуре + 80, +88.

Различают животные организмы :

  1. с постоянной температурой тела (теплокровные);
  2. с непостоянной температурой тела (хладнокровные).

Организмы с непостоянной температурой тела (рыбы, земноводные, пресмыкающиеся)

В природе температура не постоянна. Организмы, которые живут в умеренных широтах и подвергаются колебанию температур, хуже переносят постоянную температуру. Резкие колебания – зной, морозы – неблагоприятны для организмов. Животные выработали приспособления для борьбы с охлаждением и перегревом. Например, с наступлением зимы растения и животные с непостоянной температурой тела впадают в состояние зимнего покоя. Интенсивность обмена веществ у них резко снижается. При подготовке к зиме в тканях животных запасается много жира, углеводов, количество воды в клетчатке уменьшается, накапливаются сахара, глицерин, препятствующий замерзанию. Так морозостойкость зимующих организмов увеличивается.

В жаркое время года наоборот, включаются физиологические механизмы, защищающие от перегрева. У растений усиливается испарение влаги через устьица, что приводит к снижению температуры листьев. У животных усиливается испарение воды через дыхательную систему и кожу.

Организмы с постоянной температурой тела. (птицы, млекопитающие)

У этих организмов произошли изменения во внутреннем строении органов, что способствовало их приспособленности к постоянной температуре тела. Это, например – 4-х камерное сердце и наличие одной дуги аорты, обеспечивающие полное разделение артериального и венозного кровотока, интенсивный обмен веществ благодаря снабжению тканей артериальной кровью, насыщенной кислородом, перьевой или волосяной покров тела, способствующий сохранению тепла, хорошо развитая нервная деятельность). Все это позволило представителям птиц и млекопитающим сохранять активность при резких перепадах температур и освоить все места обитания.

В природных условиях температура очень редко держится на уровне благоприятности для жизни. Поэтому у растений и животных возникает специальные приспособления, которые ослабляют резкие колебания температуры. У животных, например слонов большая ушная раковина, по сравнению с его предком мамонтом, живущем в холодном климате. Ушная раковина кроме органа слуха выполняет функцию терморегулятора. У растений для защиты от перегрева появляется восковой налет, плотная кутикула.

СВЕТ

Свет обеспечивает все жизненные процессы, протекающие на Земле. Для организмов важна длина волны воспринимаемого излучения, его продолжительность и интенсивность воздействия. Например, у растений уменьшение длины светового дня и интенсивность освещения приводит к осеннему листопаду.

По отношению к свету растения делят на:

  1. светолюбивые – имеют мелкие листья, сильно ветвящиеся побеги, много пигмента – хлебные злаки. Но увеличение интенсивности освещения сверх оптимального подавляет фотосинтез, поэтому в тропиках трудно получать хорошие урожаи.
  2. тенелюбивы е – имеют тонкие листья, крупные, расположены горизонтально, с меньшим количеством устьиц.
  3. теневыносливые – растения способные обитать в условиях хорошего освещения, так и в условиях затенения

Важную роль в регуляции активности живых организмов и их развитии играет продолжительность и интенсивность воздействие света – фотопериод. В умеренных широтах цикл развития животных и растений приурочен к сезонам года, и сигналом для подготовки к изменению температуры служит продолжительность светового дня, которая в отличии от других факторов всегда остается постоянной в определенном месте и в определенное время. Фотопериодизм – это пусковой механизм, включающий физиологические процессы, приводящие к росту и цветению растений весной, плодоношению летом, сбрасыванию листьев осенью у растений. У животных к накоплению жира к осени, размножению животных, их миграции, перелету птиц и наступлению стадии покоя у насекомых. (Сообщение учащихся).

Кроме сезонных, есть еще и суточные изменения режима освещенности, смена дня и ночи определяет суточный ритм физиологической активности организмов. Важное приспособление, которое обеспечивает выживание особи – это своего рода «биологические часы», способность ощущать время.

Животные , активность которых зависит от времени суток , бывают с дневным, ночным и сумеречным образом жизни.

ВЛАЖНОСТЬ

Вода – это необходимый компонент клетки, поэтому ее количество в тех или иных местах обитания является ограничивающим фактором для растений и животных и определяет характер флоры и фауны данной местности.

Избыток влаги в почве приводит к заболачиванию почвы и появлению болотной растительности. В зависимости от влажности почвы (количество осадков) видовой состав растительности меняется. Широколиственные леса сменяются мелколиственными, затем лесостепной растительностью. Далее низкотравье, и при 250 мл в год – пустыня. Осадки в течении года могут выпадать не равномерно, живым организмам приходится переносить длительные засухи. Например, растения и животные саванн, где интенсивность растительного покрова, а так же и интенсивное питание копытных животных зависит от сезона дождей.

В природе происходят и суточные колебания влажности воздуха, которые влияют на активность организмов. Между влажностью и температурой есть тесная связь. Температура сильнее влияет на организм при влажность высокая или низкая. У растений и животных появились приспособления к разной влажности. Например, у растений – развита мощная корневая система, утолщена кутикула листа, листовая пластинка уменьшена или превращена в иголки и колючки. У саксаула фотосинтез идет зеленой частью стебля. Рост в период засухи у растений прекращается. Кактусы запасают влагу в расширенной части стебля, иголки вместо листьев уменьшают испарение.

У животных тоже появились приспособленности, позволяющих переносить недостаток влаги. Мелкие животные – грызуны, змеи, черепахи, членистоногие – добывают влагу из пищи. Источником воды может стать жироподобное вещество например у верблюда. В жаркое время некоторые животные – грызуны, черепахи впадают в спячку, продолжавшуюся несколько месяцев. Растения – эфемеры к началу лета, после кратковременного цветения, могут сбрасывать листья, отмирать наземные части и так переживать период засухи. При этом до следующего сезона сохраняются луковицы, корневища.

По отношению к воде растения делят:

  1. водные растения повышенной влажности;
  2. околоводные растения, наземно-водные;
  3. наземные растения;
  4. растения сухих и очень сухих мест, обитают в местах с недостаточным увлажнениям, могут переносить непродолжительную засуху;
  5. суккуленты – сочные, накапливают воду в тканях своего тел.

По отношению к воде животных делят:

  1. влаголюбивые животные;
  2. промежуточная группа;
  3. сухолюбивые животные.

Виды приспособленностей организмов к колебаниям температуры, влажности и света:

  1. теплокровность поддержание организмом постоянной температуры тела;
  2. зимняя спячка – продолжительныйсон животных в зимнее время года;
  3. анабиоз – временное состояние организма, при котором жизненные процессы замедленны до минимума и отсутствуют все видимые признаки жизни (наблюдается у холоднокровных и у животных зимой и в жаркий период времени);
  4. морозостойкост ь – способность организмов переносить отрицательные температуры;
  5. состояние покоя – приспособительное свойство многолетнего растения, для которого характерно прекращение видимого роста и жизнедеятельности, отмирание наземных побегов у травянистых форм растений и опадение листьев у древесных форм;
  6. летний покой – приспособительное свойство раннецветущих растений (тюльпан, шафран) тропических районов, пустынь, полупустынь.

(Сообщения учащихся.)

Сделаем вывод, на все живые организмы, т.е. на растения и животные действуют абиотические факторы среды (факторы неживой природы), особенно температура, свет и увлажненность. В зависимости от влияния факторов неживой природы, растения и животных делят на различные группы и у них появляются приспособленности к влиянию этих абиотических факторов.

Практические задания по группам: (Приложение 1)

1. ЗАДАНИЕ: Из перечисленных животных назовите хладнокровных (т.е. с непостоянной температурой тела).

2. ЗАДАНИЕ: Из перечисленных животных назовите теплокровных (т.е. с постоянной температурой тела).

3. ЗАДАНИЕ: выберите из предложенных растений те, которые являются светолюбивыми, тенелюбивыми и теневыносливыми и запишите в таблицу.

4. ЗАДАНИЕ: выберите животных, ведущих дневной, ночной и сумеречный образ жизни.

5. ЗАДАНИЕ: выберите растения, относящиеся к разным группам по отношению к воде.

6. ЗАДАНИЕ: выберите животных, относящихся к разным группам по отношению к воде.

Задания по теме «абиотические факторы среды», ответы (

Свет — лучистая энергия солнца, которая складывается из нескольких составляющих:

  • Видимое излучение (50%)
  • Ультра-фиолетовое излучение (1%)
  • Инфракрасное излучение (45-47%)
  • Рентгеновское излучение (излучение с длинами волн в области радиодиапазона).

Все эти виды излучения оказывают влияние на живые организмы.

  • Инфракрасное излучение воспринимается всеми организмами, а лучи с длиной волны 1,05 мкм принимают участие в теплообмене растений.
  • Ультрафиолет с длиной волны 0,25-0,3 мкм стимулирует образование витамина D у животных; с длиной волны 0,2-0,3 мкм губительно действует на некоторые микроорганизмы, в том числе болезнетворные; с длиной волны 0,38-0,4 мкм необходимо для фотосинтеза у растений.

Благодаря озоновому экрану ультрафиолетовое и рентгеновское излучение частично задерживаются.
Видимый свет оказывает комплексное влияние на организм: красные лучи — преимущественно тепловое воздействие; синие и фиолетовые — изменяют скорость и направление биохимических реакций. В целом видимый свет влияет на скорость роста и развития растений, на интенсивность фотосинтеза, на активность животных, вызывает изменение влажности и температуры среды, является важным сигнальным фактором, обеспечивающим суточные и сезонные биоциклы.

Световой режим — один из ведущих абиотических факторов, определяющий особенности распределения и изменения интенсивности солнечной радиации, которая поступает к природным и искусственным экосистемам. Световой режим любого места обитания определяется различными факторами.
Показатели светового режима — интенсивность света, его количество и качество.

Интенсивность (сила света) — определяется количеством солнечной энергии, приходящейся на 1 см 2 горизонтальной поверхности в 1 минуту. Для прямых солнечных лучей этот показательпочти не зависит от географической широты, однако на него влияют особенности рельефа местности. Например, на южных склонах интенсивность света всегда больше, чем на северных.

Количество света — суммарная солнечная радиация, измеренная за астрономический год. Увеличивается от полюсов к экватору, сопровождается изменением его качества. Для светового режима также имеет значение количество отражаемого света.

Альбедо земной поверхности — величина, характеризующая ее способность отражать (рассеивать) падающее на нее излучение и равное отношению количества отраженного света к общему количеству падающего. Выражается в процентах (%) и зависит от угла падения солнечных лучей и свойств отражающей поверхности.

Экологические группы растений по отношению к свету

Экологические группы / Характеристики Светолюбивые (гелиофиты) Тенелюбивые (сциофиты) Теневыносливые (факультативные гелиофиты)
Место обитания Открытые места, постоянно и хорошо освещенные Нижний ярус тенистых лесов, постоянная тень Хорошо освещенные места, небольшое затенение
Адаптивные особенности Приземистость, розеточное расположение листьев, укороченные или сильно ветвящиеся побеги, цветы некоторых поворачиваются за солнцем Мозаичное расположение листьев у древесных пород, темно-зеленые крупные листья, расположенные горизонтально У древесных пород световые листья (поверхность кроны) толстые и грубые, теневые — матовые, неопушенные
Реакция на изменение светового режима Не выносят длительного затенения (погибают) Не выносят яркого освещения (угнетение, гибель) Относительно легко перестраиваются к изменению светового режима
Характерные черты жизнедеятельности Наибольшая интенсивность фотосинтеза — при полном солнечном освещении, значительные траты углеводов на дыхание
Примеры растений Ранневесенние растения степей и полупустынь, лиственница, акация, подорожник, кувшинка Лесные травы, зеленые мхи, ель, пихта, тис, бук, самшит Большинство деревьев лесов, эвкалипты

Относительное световое довольствие — освещенность в данном месте, выраженная в процентах от общего количества света, поступающего извне. Минимальное световое довольствие — среднее световое довольствие на границе облиствения во внутренней части кроны. Используется для оценки потребности растения в свете, для фотосинтеза и обмена веществ. Например, минимальное световое довольствие для лиственницы, сосны, березы — 10-20%; для ели, пихты, бука — 1-3%.
Световой режим как экологический фактор приводит к возникновению многоярусности растительного покрова, так как это позволяет лучше использовать солнечную радиацию.

Свет как условие ориентации растений и животных

У растений ориентация на свет осуществляется в результате фототропизмов — направленных ростовых движений органов растений.
Если движение направлено в сторону светового раздражителя, то это — положительный фототропизм; если в противоположную — отрицательный.

У животных ориентация на свет осуществляется в результате фототаксисов — двигательных реакций животных в ответ на одностороннее световое излучение. При положительном фототаксисе животное перемещается в сторону наибольшей освещенности, при отрицательном — в сторону наименьшей освещенности. Свет необходим животным для зрительной ориентации в пространстве. Начиная с кишечно-полостных животных, у них развиваются сложные светочувствительные органы, имеющие различное строение — глаза. По отношению к световому режиму среди животных различают ночные и сумеречные виды и виды, живущие в постоянной темноте и не выносящие яркого солнечного света.

Световой режим оказывает влияние и на географическое распространение животных. Сигнальное значение в жизни животных имеет биолюминесценция — видимое свечение живых организмов, связанное с процессами их жизнедеятельности. Возникает в результате окисления сложных органических соединений (люциферинов) при участии ферментов (люциферазов) в ответ на раздражение, поступающее из внешней среды. Энергия, выделяющаяся в результате этих реакций, не рассеивается в виде тепла, а превращается в энергию электронного возбуждения молекул, способных выделять ее в виде фотонов. Свечение может испускать вся поверхность тела или специальные органы свечения. Используется животными для освещения и приманки добычи (глубоководные рыбы), для предостережения, отпугивания или отвлечения хищников (некоторые креветки), для привлечения особей другого пола в брачный период (светлячки), для ориентации в стае. Некоторые животные светятся в ответ на механическое раздражение (светящиеся иглокожие на мелководьях коралловых рифов Карибского моря).

Таким образом, растениям свет необходим прежде всего для фотосинтеза, благодаря которому в биосфере создается органическое вещество и накапливается энергия, для животных он имеет в основном информационное значение.

Любые свойства или компоненты внешней среды, оказывающие влияние на организмы, называют экологическими факторами . Свет, тепло, концентрация солей в воде или почве, ветер, град, враги и возбудители болезней - все это экологические факторы, перечень которых может быть очень большим.

Среди них различают абиотические , относящиеся к неживой природе, и биотические , связанные с влиянием организмов друг на друга.

Экологические факторы чрезвычайно разнообразны, и каждый вид, испытывая их влияние, отвечает на него по-разному. Тем не менее, есть некоторые общие законы, которым подчиняются ответные реакции организмов на любой фактор среды.

Главный из них - закон оптимума . Он отражает то, как переносят живые организмы разную силу действия экологических факторов. Сила воздействия каждого из них постоянно меняется. Мы живем в мире с переменными условиями, и лишь в определенных местах планеты значения некоторых факторов более или менее постоянны (в глубине пещер, на дне океанов).

Закон оптимума выражается в том, что любой экологический фактор имеет определенные пределы положительного влияния на живые организмы.

При отклонении от этих пределов знак воздействия меняется на противоположный. Например, животные и растения плохо переносят сильную жару и сильные морозы; оптимальными являются средние температуры. Точно так же и засуха, и постоянные проливные дожди одинаково неблагоприятны для урожая. Закон оптимума свидетельствует о мере каждого фактора для жизнеспособности организмов. На графике он выражается симметричной кривой, показывающей, как изменяется жизнедеятельность вида при постепенном увеличении воздействия фактора (рис. 13).

Рисунок 13. Схема действия факторов среды на живые организмы. 1,2 - критические точки
(для увеличения изображения нажмите на рисунок)

В центре под кривой - зона оптимума . При оптимальных значениях фактора организмы активно растут, питаются, размножаются. Чем больше отклоняется значение фактора вправо или влево, т. е. в сторону уменьшения или увеличения силы действия, тем менее благоприятно это для организмов. Кривая, отражающая жизнедеятельность, резко спускается вниз по обе стороны от оптимума. Здесь располагаются две зоны пессимума . При пересечении кривой с горизонтальной осью находятся две критические точки . Это такие значения фактора, которые организмы уже не выдерживают, за их пределами наступает смерть. Расстояние между критическими точками показывает степень выносливости организмов к изменению фактора. Условия, близкие к критическим точкам, особенно тяжелы для выживания. Такие условия называют экстремальными .

Если начертить кривые оптимума какого-либо фактора, например температуры, для разных видов, то они не совпадут. Часто то, что является оптимальным для одного вида, для другого представляет пессимум или даже находится за пределами критических точек. Верблюды и тушканчики не могли бы жить в тундре, а северные олени и лемминги - в жарких южных пустынях.

Экологическое разнообразие видов проявляется и в положении критических точек: у одних они сближены, у других - широко расставлены. Это значит, что ряд видов может жить только в очень стабильных условиях, при незначительном изменении экологических факторов, а другие выдерживают широкие их колебания. Например, растение недотрога вянет, если воздух не насыщен водяными парами, а ковыль хорошо переносит изменения влажности и не погибает даже в засуху.

Таким образом, закон оптимума показывает нам, что для каждого вида есть своя мера влияния каждого фактора. И уменьшение, и усиление воздействия за пределами этой меры ведет к гибели организмов.

Для понимания связи видов со средой не менее важен закон ограничивающего фактора .

В природе на организмы одновременно влияет целый комплекс факторов среды в разных комбинациях и с разной силой. Вычленить роль каждого из них непросто. Какой из них значит больше, чем другие? То, что мы знаем о законе оптимума, позволяет понять, что нет всецело положительных или отрицательных, важных или второстепенных факторов, а все зависит от силы воздействия каждого.

Закон ограничивающего фактора гласит, что наиболее значим тот фактор, который больше всего отклоняется от оптимальных для организма значений.

Именно от него и зависит в данный конкретный период выживание особей. В другие отрезки времени ограничивающими могут стать другие факторы, и в течение жизни организмы встречаются с самыми разными ограничениями своей жизнедеятельности.

С законами оптимума и ограничивающего фактора постоянно сталкивается практика сельского хозяйства. Например, рост и развитие пшеницы, а следовательно, и получение урожая постоянно ограничиваются то критическими температурами, то недостатком или избытком влаги, то нехваткой минеральных удобрений, а иногда и такими катастрофическими воздействиями, как град и бури. Требуется много сил и средств, чтобы поддерживать оптимальные условия для посевов, и при этом в первую очередь компенсировать или смягчать действие именно ограничивающих факторов.

Условия обитания различных видов удивительно разнообразны. Одни из них, например некоторые мелкие клещики или насекомые, всю жизнь проводят внутри листа растения, который для них - целый мир, другие осваивают огромные и разнообразные пространства, как, например, северные олени, киты в океане, перелетные птицы.

В зависимости от того, где живут представители разных видов, на них действуют разные комплексы экологических факторов. На нашей планете можно выделить несколько основных сред жизни , сильно различающихся по условиям существования: водную, наземно-воздушную, почвенную. Средой обитания служат также сами организмы, в которых живут другие.

Водная среда жизни. Все водные обитатели, несмотря на различия в образе жизни, должны быть приспособлены к главным особенностям своей среды. Эти особенности определяются, прежде всего, физическими свойствами воды: ее плотностью, теплопроводностью, способностью растворять соли и газы.

Плотность воды определяет ее значительную выталкивающую силу. Это значит, что в воде облегчается вес организмов и появляется возможность вести постоянную жизнь в водной толще, не опускаясь на дно. Множество видов, преимущественно мелких, неспособных к быстрому активному плаванию, как бы парят в воде, находясь в ней во взвешенном состоянии. Совокупность таких мелких водных обитателей получила название планктон . В состав планктона входят микроскопические водоросли, мелкие рачки, икра и личинки рыб, медузы и многие другие виды. Планктонные организмы переносятся течениями не в силах противостоять им. Наличие в воде планктона делает возможным фильтрационный тип питания, т. е. отцеживание, при помощи разных приспособлений, взвешенных в воде мелких организмов и пищевых частиц. Оно развито и у плавающих, и у сидячих донных животных, таких, как морские лилии, мидии, устрицы и другие. Сидячий образ жизни был бы невозможен у водных обитателей, если бы не было планктона, а он, в свою очередь, возможен только в среде с достаточной плотностью.

Плотность воды затрудняет активное передвижение в ней, поэтому быстро плавающие животные, такие, как рыбы, дельфины, кальмары, должны иметь сильную мускулатуру и обтекаемую форму тела. В связи с высокой плотностью воды давление с глубиной сильно растет. Глубоководные обитатели способны переносить давление, которое в тысячи раз выше, чем на поверхности суши.

Свет проникает в воду лишь на небольшую глубину, поэтому растительные организмы могут существовать только в верхних горизонтах водной толщи. Даже в самых чистых морях фотосинтез возможен лишь до глубин в 100-200 м. На больших глубинах растений нет, а глубоководные животные обитают в полном мраке.

Температурный режим в водоемах более мягок, чем на суше. Из-за высокой теплоемкости воды колебания температуры в ней сглажены, и водные обитатели не сталкиваются с необходимостью приспосабливаться к сильным морозам или сорокаградусной жаре. Только в горячих источниках температура воды может приближаться к точке кипения.

Одна из сложностей жизни водных обитателей - ограниченное количество кислорода . Его растворимость не очень велика и к тому же сильно уменьшается при загрязнении или нагревании воды. Поэтому в водоемах иногда бывают заморы - массовая гибель обитателей из-за нехватки кислорода, которая наступает по разным причинам.

Солевой состав среды также очень важен для водных организмов. Морские виды не могут жить в пресных водах, а пресноводные - в морях из-за нарушения работы клеток.

Наземно-воздушная среда жизни. Эта среда отличается другим набором особенностей. Она в целом более сложна и разнообразна, чем водная. В ней много кислорода, много света, более резкие изменения температуры во времени и в пространстве, значительно слабее перепады давления и часто возникает дефицит влаги. Хотя многие виды могут летать, а мелкие насекомые, пауки, микроорганизмы, семена и споры растений переносятся воздушными течениями, питание и размножение организмов происходит на поверхности земли или растений. В такой малоплотной среде, как воздух, организмам необходима опора. Поэтому у наземных растений развиты механические ткани, а у наземных животных сильнее, чем у водных, выражен внутренний или наружный скелет. Низкая плотность воздуха облегчает передвижение в нем.

М. С. Гиляров (1912-1985) крупный зоолог, эколог, академик, основоположник широких исследований мира почвенных животных пассивный полет освоили около двух третей обитателей суши. Большинство из них - насекомые и птицы.

Воздух - плохой проводник тепла. Этим облегчается возможность сохранения тепла, вырабатываемого внутри организмов, и поддержание постоянной температуры у теплокровных животных. Само развитие теплокровности стало возможным в наземной среде. Предки современных водных млекопитающих - китов, дельфинов, моржей, тюленей - когда-то жили на суше.

У наземных обитателей очень разнообразны приспособления, связанные с обеспечением себя водой, особенно в засушливых условиях. У растений это мощная корневая система, водонепроницаемый слой на поверхности листьев и стеблей, способность к регуляции испарения воды через устьица. У животных это также различные особенности строения тела и покровов, но, кроме того, поддержанию водного баланса способствует и соответствующее поведение. Они могут, например, совершать миграции к водопоям или активно избегать особо иссушающих условий. Некоторые животные могут жить всю жизнь вообще на сухом корме, как, например, тушканчики или всем известная платяная моль. В этом случае вода, необходимая организму, возникает за счет окисления составных частей пищи.

В жизни наземных организмов большую роль играют и многие другие экологические факторы, например состав воздуха, ветры, рельеф земной поверхности. Особо важны погода и климат. Обитатели наземно-воздушной среды должны быть приспособлены к климату той части Земли, где они живут, и переносить изменчивость погодных условий.

Почва как среда жизни. Почва представляет собой тонкий слой поверхности суши, переработанный деятельностью живых существ. Твердые частицы пронизаны в почве порами и полостями, заполненными частично водой, а частично воздухом, поэтому почву способны населять и мелкие водные организмы. Объем мелких полостей в почве - очень важная ее характеристика. В рыхлых почвах он может составлять до 70%, а в плотной - около 20%. В этих порах и полостях или на поверхности твердых частиц обитает огромное множество микроскопических существ: бактерий, грибов, простейших, круглых червей, членистоногих. Более крупные животные прокладывают в почве ходы сами. Вся почва пронизана корнями растений. Глубина почвы определяется глубиной проникновения корней и деятельностью роющих животных. Она составляет не более 1,5-2 м.

Воздух в почвенных полостях всегда насыщен водяными парами, а состав его обогащен углекислым газом и обеднен кислородом. Этим условия жизни в почве напоминают водную среду. С другой стороны, соотношение воды и воздуха в почвах постоянно меняется в зависимости от погодных условий. Температурные колебания очень резки у поверхности, но быстро сглаживаются с глубиной.

Главная особенность почвенной среды - постоянное поступление органического вещества в основном за счет отмирающих корней растений и опадающей листвы. Это ценный источник энергии для бактерий, грибов и многих животных, поэтому почва - самая насыщенная жизнью среда . Ее скрытый от глаз мир очень богат и разнообразен.

По внешнему облику разных видов животных и растений можно понять, не только в какой среде они обитают, но и какой образ жизни в ней ведут.

Если перед нами четвероногое животное с сильно развитой мускулатурой бедер на задних конечностях и гораздо более слабой - на передних, которые к тому же и укорочены, с относительно короткой шеей и длинным хвостом, то мы с уверенностью можем сказать, что это - наземный прыгун, способный к быстрым и маневренным движениям, обитатель открытых пространств. Так выглядят и знаменитые австралийские кенгуру, и пустынные азиатские тушканчики, и африканские прыгунчики, и многие другие прыгающие млекопитающие - представители различных отрядов, живущие на разных континентах. Они обитают в степях, прериях, саваннах - там, где быстрое передвижение по земле - главное средство спасения от хищников. Длинный хвост служит балансиром при быстрых поворотах, иначе животные теряли бы равновесие.

Бедра сильно развиты на задних конечностях и у прыгающих насекомых - саранчи, кузнечиков, блох, жуков-листоблошек.

Компактное тело с коротким хвостом и короткими конечностями, из которых передние очень мощные и выглядят похожими на лопату или грабли, подслеповатые глаза, короткая шея и короткий, как бы подстриженный, мех говорят нам о том, что перед нами подземный зверек, роющий норы и галереи. Это может быть и лесной крот, и степной слепыш, и австралийский сумчатый крот, и многие другие млекопитающие, ведущие сходный образ жизни.

Роющие насекомые - медведки также отличаются компактным, коренастым телом и мощными передними конечностями, похожими на уменьшенный ковш бульдозера. По внешнему виду они напоминают маленького крота.

Все летающие виды имеют развитые широкие плоскости - крылья у птиц, летучих мышей, насекомых или расправляющиеся складки кожи по бокам тела, как у планирующих летяг или ящериц.

Организмы, расселяющиеся путем пассивного полета, с потоками воздуха, характеризуются мелкими размерами и очень разнообразной формой. Однако у всех есть одна общая черта - сильное развитие поверхности по сравнению с весом тела. Это достигается разными путями: за счет длинных волосков, щетинок, разнообразных выростов тела, его удлинения или уплощения, облегчения удельного веса. Так выглядят и мелкие насекомые, и плоды-летучки растений.

Внешнее сходство, возникающее у представителей разных неродственных групп и видов в результате сходного образа жизни, называют конвергенцией.

Она затрагивает преимущественно те органы, которые непосредственно взаимодействуют с внешней средой, и гораздо слабее проявляется в строении внутренних систем - пищеварительной, выделительной, нервной.

Форма растения определяет особенности его отношений с внешней средой, например способ перенесения холодного времени года. У деревьев и высоких кустарников самые высокие ветви.

Форма лианы - со слабым стволом, обвивающим другие растения, может быть как у древесных, так и у травянистых видов. К ним относятся виноград, хмель, луговая повилика, тропические лианы. Обвивая стволы и стебли прямостоячих видов, лиановидные растения выносят свои листья и цветки к свету.

В сходных климатических условиях на разных материках возникает сходный внешний облик растительности, которая состоит из различных, часто совершенно не родственных видов.

Внешнюю форму, отражающую способ взаимодействия со средой обитания, называют жизненной формой вида. Разные виды могут, иметь сходную жизненную форму , если ведут близкий образ жизни.

Жизненная форма вырабатывается в ходе вековой эволюции видов. Те виды, которые развиваются с метаморфозом, в течение жизненного цикла закономерно сменяют свою жизненную форму. Сравните, например, гусеницу и взрослую бабочку или лягушку и ее головастика. Некоторые растения могут принимать разную жизненную форму в зависимости от условий произрастания. Например, липа или черемуха могут быть и прямостоящим деревом, и кустом.

Сообщества растений и животных устойчивее и полноценнее, если они включают представителей разных жизненных форм. Это значит, что такое сообщество полнее использует ресурсы среды и имеет более разнообразные внутренние связи.

Состав жизненных форм организмов в сообществах служит как бы индикатором особенностей окружающей их среды и происходящих в ней изменений.

Инженеры, конструирующие летательные аппараты, внимательно изучают разные жизненные формы летающих насекомых. Созданы модели машин с машущим полетом, по принципу движения в воздухе двукрылых и перепончатокрылых. В современной технике сконструированы шагающие машины, а также роботы с рычажным и гидравлическим способом движения, как у животных разных жизненных форм. Такие машины способны передвигаться по крутым склонам и бездорожью.

Жизнь на Земле развивалась в условиях регулярной смены дня и ночи и чередования времен года из-за вращения планеты вокруг своей оси и вокруг Солнца. Ритмика внешней среды создает периодичность, т. е. повторяемость условий в жизни большинства видов. Регулярно повторяются как критические, трудные для выживания периоды, так и благоприятные.

Приспособленность к периодическим изменениям внешней среды выражается у живых существ не только непосредственной реакцией на изменяющиеся факторы, но и в наследственно закрепленных внутренних ритмах.

Суточные ритмы. Суточные ритмы приспосабливают организмы к смене дня и ночи. У растений интенсивный рост, распускание цветков приурочены к определенному времени суток. Животные в течение суток сильно меняют активность. По этому признаку различают дневные и ночные виды.

Суточный ритм организмов - это не только отражение смены внешних условий. Если поместить человека, или животных, или растения в постоянную, стабильную обстановку без смены дня и ночи, то сохраняется ритмика процессов жизнедеятельности, близкая к суточной. Организм как бы живет по своим внутренним часам, отсчитывая время.

Суточный ритм может захватывать многие процессы в организме. У человека около 100 физиологических характеристик подчиняются суточному циклу: частота сокращения сердца, ритм дыхания, выделение гормонов, секрета пищеварительных желез, кровяное давление, температура тела и многие другие. Поэтому, когда человек бодрствует вместо сна, организм все равно настроен на ночное состояние и бессонные ночи плохо отражаются на здоровье.

Однако суточные ритмы проявляются не у всех видов, а только у тех, в жизни которых смена дня и ночи играет важную экологическую роль. Обитатели пещер или глубоких вод, где такой смены нет, живут по другим ритмам. Да и среди наземных жителей суточная периодичность выявляется не у всех.

В опытах при строго постоянных условиях плодовые мушки-дрозофилы сохраняют суточный ритм в течение десятков поколений. Эта периодичность передается у них по наследству, как и у многих других видов. Так глубоки приспособительные реакции, связанные с суточной цикликой внешней среды.

Нарушения суточной ритмики организма в условиях ночной работы, космических полетов, подводного плавания и т. п. представляют серьезную медицинскую проблему.

Годовые ритмы. Годовые ритмы приспосабливают организмы к сезонной смене условий. В жизни видов периоды роста, размножения, линек, миграций, глубокого покоя закономерно чередуются и повторяются таким образом, что критическое время года организмы встречают в наиболее устойчивом состоянии. Самый же уязвимый процесс - размножение и выращивание молодняка - приходится на наиболее благоприятный сезон. Эта периодичность смены физиологического состояния в течение года во многом врожденная, т. е. проявляется как внутренний годовой ритм. Если, например, австралийских страусов или дикую собаку динго поместить в зоопарк Северного полушария, период размножения у них наступит осенью, когда в Австралии весна. Перестройка внутренних годовых ритмов происходит с большим трудом, через ряд поколений.

Подготовка к размножению или к перезимовке - длительный процесс, который начинается в организмах задолго до наступления критических периодов.

Резкие кратковременные изменения погоды (летние заморозки, зимние оттепели) обычно не нарушают годовых ритмов растений и животных. Главный экологический фактор, на который реагируют организмы в своих годовых циклах, - не случайные изменения погоды, а фотопериод - изменения в соотношении дня и ночи.

Длина светового дня закономерно изменяется в течение года, и именно эти изменения служат точным сигналом приближения весны, лета, осени или зимы.

Способность организмов реагировать на изменение длины дня получила название фотопериодизм .

Если день сокращается, виды начинают готовиться к зиме, если удлиняется - к активному росту и размножению. В этом случае для жизни организмов важен не сам фактор изменения длины дня и ночи, а его сигнальное значение , свидетельствующее о предстоящих глубоких изменениях в природе.

Как известно, длина дня сильно зависит от географической широты. В северном полушарии на юге летний день значительно короче, чем на севере. Поэтому южные и северные виды по-разному реагируют на одну и ту же величину изменения дня: южные приступают к размножению при более коротком дне, чем северные.

ЭКОЛОГИЧЕСКИЕ ФАКТОРЫ

Иванова Т.В., Калинова Г.С., Мягкова А.Н. "Общая биология". Москва, "Просвещение", 2000

  • Тема 18. "Среда обитания. Экологические факторы." глава 1; стр. 10-58
  • Тема 19. "Популяции. Типы взаимоотношений организмов." глава 2 §8-14; стр. 60-99; глава 5 § 30-33
  • Тема 20. "Экосистемы." глава 2 §15-22; стр. 106-137
  • Тема 21. "Биосфера. Круговороты веществ." глава 6 §34-42; стр. 217-290

Температура является важнейшим экологическим фактором. Температура оказывает огромное влияние на многие стороны жизнедеятельности организмов их географии распространения, размножения и другие биологические свойства организмов зависящие в основном от температуры. Диапазон, т.е. пределы температур в которых может существовать жизнь, колеблется примерно от -200°С до +100°С, иногда обнаруживается существование бактерии в горячих источниках при температуре 250°С. В действительности, большинство организмов могут существовать при еще более узком диапазоне температур.

Некоторые виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться в горячих источниках при температуре, близкой к точке кипения. Верхний температурный предел для бактерии горячих источников лежит около 90°С. Изменчивость температуры очень важна с экологической точки зрения.

Любой вид способен жить только в пределах определенного интервала температур, так называемые максимальной и минимальной летальной температурами. За пределами этих критических крайних температур, холод или жара, наступает смерть организма. Где-то между ними находится оптимальная температура, при которой жизнедеятельность всех организмов, живого вещества в целом идет активно.

По толерантности организмов к температурному режиму они делятся на эвритермные и стенотермные, т.е. способные переносить колебание температуры в широких пределах или узких пределах. Например, лишайники и многие бактерии могу жить при различной температуре, или орхидеи и другие теплолюбивые растения тропических поясов — являются стенотермными.

Некоторые животные способны поддерживать постоянную температуру тела, не зависимо от температуры окружающей среды. Такие организмы называются гомойтермными. У других животных температура тела меняется в зависимости от температуры окружающей среды. Их называют пойкилотермными. В зависимости от способа адаптации организмов к температурному режиму они делятся на две экологические группы: криофиллы — организмы приспособленные к холоду, к низким темпера турам; термофилы — или теплолюбивые.

Правило Аллена — экогеографическое правило, установленное Д. Алленом в 1877 г. Согласно с этим правилом среди родственных форм гомойотермных (теплокровных) животных, ведущих сходный образ жизни, те, которые обитают в более холодном климате, имеют относительно меньшие выступающие части тела: уши, ноги, хвосты и т. д.

Уменьшение выступающих частей тела приводит к уменьшению относительной поверхности тела и способствует экономии тепла.

Примером данного правила являются представители семейства Собачьи из различных регионов. Наименьшие (относительно длины тела) уши и менее вытянутая морда в этом семействе — у песца (ареал — Арктика), а наибольшие уши и узкая, вытянутая морда — у лисицы фенека (ареал — Сахара).


Также это правило выполняется в отношении в человеческих популяций: самые короткие (относительно размеров тела) нос, руки и ноги характерны для эсскимосско-алеутских народов (эскимосов, инуитов), а длинные руки и ноги для фур и тутси.

Правило Бергмана — экогеографическое правило, сформулированное в 1847 г. немецким биологом Карлом Бергманом. Правило гласит, что среди сходных форм гомойотермных (теплокровных) животных наиболее крупными являются те, которые живут в условиях более холодного климата — в высоких широтах или в горах. Если существуют близкие виды (например, виды одного рода), которые существенно не отличаются по характеру питания и образу жизни, то более крупные виды также встречаются в условиях более сурового (холодного) климата.

Правило основано на предположении, что общая теплопродукция у эндотермных видов зависит от объёма тела, а скорость теплоотдачи — от площади его поверхности. При увеличении размеров организмов объём тела растет быстрее, чем его поверхность. Экспериментально это правило впервые было проверено на собаках разного размера. Оказалось, что теплопродукция у мелких собак выше на единицу массы, но независимо от размера она остается практически постоянной на единицу площади поверхности.

Правило Бергмана действительно нередко выполняется как в пределах одного вида, так и среди близких видов. Например,амурская форма тигра с Дальнего Востока крупнее суматранской из Индонезии. Северные подвиды волка в среднем крупнее южных. Среди близких видов рода медведь наиболее крупные обитают в северных широтах (белый медведь, бурые медведи с о. Кодьяк), а наиболее мелкие виды (например, очковый медведь) — в районах с теплым климатом.

В то же время это правило нередко подвергалось критике; отмечалось, что оно не может иметь общего характера, так как на размеры млекопитающих и птиц влияют многие другие факторы, кроме температуры. Кроме того, адаптации к суровому климату на популяционном и видовом уровне часто происходят не за счет изменений размеров тела, а за счет изменений размеров внутренних органов (увеличение размера сердца и легких) или за счет биохимических адаптаций. С учетом этой критики необходимо подчеркнуть, что правило Бергмана носит статистический характер и проявляет свое действие отчетливо при прочих равных условиях.

Действительно, из этого правила известно много исключений. Так, наиболее мелкая раса шерстистого мамонта известна с заполярного острова Врангеля; многие лесные подвиды волка крупнее тундровых (например, исчезнувший подвид с полуострова Кенай; предполагается, что крупные размеры могли давать этим волкам преимущество при охоте на крупных лосей, населяющих полуостров). Дальневосточный подвид леопарда, обитающий на Амуре, существенно меньше, чем африканский. В приведенных примерах сравниваемые формы отличаются по образу жизни (островные и континентальные популяции; тундровый подвид, питающийся более мелкой добычей и лесной, питающийся более крупной).

В отношении человека правило в определенной степени применимо (например, племена пигмеев, видимо, неоднократно и независимо появлялись в разных районах с тропическим климатом); однако из-за различий в местных диетах и обычаях, миграции и дрейфа генов между популяциями накладываются ограничения на применимость этого правила.

Правило Глогера состоит в том, что среди родственных друг другу форм (разных рас или подвидов одного вида, родственных видов) гомойотермных (теплокровных) животных, те, которые обитают в условиях тёплого и влажного климата, окрашены ярче, чем те, которые обитают в условиях холодного и сухого климата. Установлено в 1833 году Константином Глогером (Gloger C. W. L.; 1803-1863), польским и немецким орнитологом.

К примеру, большинство пустынных видов птиц окрашены тусклее, чем их родственники из субтропических и тропических лесов. Объясняться правило Глогера может как соображениями маскировки, так и влиянием климатических условий на синтез пигментов. В определённой степени правило Глогера распространяется и напойкилотермных (холоднокровных) животных, в частности, насекомых.

Влажность как экологический фактор

Первоначально все организмы были водными. Завоевав сушу, не утратили зависимости от воды. Составной частью всех живых организмов является вода. Влажность — это количество водяного пара в воздухе. Без влажности или воды нет жизни.

Влажность - это параметр характеризующий содержание водяного пара в воздухе. Абсолютная влажность - это количество водяного пара в воздухе и зависит от температуры и давления. Это количество называется относительной влажностью (т.е. соотношение количества водяного пара в воздухе к насыщенному количеству пара при определенных условиях температуры и давления.)

В природе существует суточный ритм влажности. Влажность колеблется по вертикали и горизонтали. Этот фактор наряду со светом и температурой играет большую роль в регулировании активности организмов и их распространении. Влажность изменяет и эффект температуры.

Важным экологическим фактором является иссушение воздуха. Особенно для наземных организмов, имеет огромное значение иссушающие действие воздуха. Животные приспосабливаются, передвигаясь в защищенные места и активный образ жизни ведут ночью.

Растения поглощают воду из почвы и почти полностью (97-99%) испаряется через листья. Этот процесс называется транспирацией. Испарение охлаждает листья. Благодаря испарению идет транспорт ионов, через почву к корням, транспорт ионов между клетками и т.д.

Определенное количество влажности совершенно необходима для наземных организмов. Многие из них для нормальной жизнедеятельности нуждаются в относительной влажности 100%, и наоборот организм находящийся в нормальном состоянии, не может жить долгое время в абсолютно сухом воздухе, ибо он постоянно теряет воду. Вода есть необходимая часть живого вещества. Поэтому потеря воды в известном количестве приводит к гибели.

Растения сухого климата приспосабливается морфологическими изменениями, редукцией вегетативных органов, особенно листьев.

Наземные животные также приспосабливаются. Многие из них пьют воду, другие всасывают ее через покровы тела в жидком или парообразном состоянии. Например, большинство амфибий, некоторые насекомые и клещи. Большая часть животных пустынь никогда не пьет, они удовлетворяют свои потребности за счет воды, поступившей с пищей. Другие животные получает воду в процессе окисления жиров.

Вода для живых организмов совершенно необходима. Поэтому организмы распространяются по местообитанию в зависимости от своих потребностей: водные организмы в воде живут постоянно; гидрофиты могут жить только в очень влажных средах.

С точки зрения экологической валентности гидрофиты и гигрофиты относятся к группе стеногигров. Влажность сильно влияет на жизненные функции организмов, например, 70% относительная влажность была очень благоприятным для полевого созревания и плодовитости самок перелетной саранчи. При благоприятном размножении они причиняют огромный экономический урон посевам многих стран.

Для экологической оценки распространения организмов пользуются показателем сухости климата. Сухость служит селективным фактором для экологической классификации организмов.

Таким образом, в зависимости от особенностей влажности местного климата виды организмов распределяются по экологическим группам:

1. Гидатофиты — это водные растения.

2. Гидрофиты — это растения наземно-водные.

3. Гигрофиты — наземные растения живущие в условиях повышенной влажности.

4. Мезофиты — это растения, произрастающие при среднем увлажнении

5. Ксерофиты — это растения произрастающие с недостаточным увлажнением. Они в свою очередь делятся на: суккуленты — сочные растения (кактусы); склерофиты — это растения с узкими и мелкими листьями, и свернутыми в трубочки. Они также делятся на эуксерофиты и стипаксерофиты. Эуксерофиты — это степные растения. Стипаксерофиты — это группа узколистных дерновинных злаков (ковыль, типчак, тонконог и др.). В свою очередь мезофиты также делятся на мезогигрофиты, мезоксерофиты и т.д.

Уступая по своему значению температуре, влажность относится тем не менее к основным экологическим факторам. На протяжении большей части истории живой природы органический мир был представлен исключительно водными нормами организмов. Составной частью огромного большинства живых существ является вода, и для осуществления размножения или слияния гамет почти все они нуждаются в водной среде. Сухопутные животные вынуждены создавать в своем теле искусственную водную среду для оплодотворения, а это приводят к тому, что последнее становится внутренним.

Влажность - это количество водяного пара в воздухе. Его можно выразить в граммах на кубический метр.

Свет как экологический фактор. Роль света в жизни организмов

Свет, есть одна из форм энергии. По первому закону термодинамики, или закону сохранения энергии, энергия может переходить из одной формы в другую. По этому закону, организмы являются термодинамической системой постоянно обменивающейся с окружающей средой энергией и веществом. Организмы, на поверхности Земли подвергаются воздействию потока энергии, в основном солнечной энергий, а также и длинноволного теплового излучения космических тел.

Оба эти фактора определяют климатические условия среды (температура, скорость испарения воды, движение воздуха и воды). На биосферу из космоса падает солнечный свет с энергией 2 кал. на 1см 2 в 1 мин. Эта так называемая солнечная постоянная. Этот свет, проходя через атмосферу, ослабляется и до поверхности Земли в ясный полдень может дойти не более 67% его энергии, т.е. 1,34 кал. на см 2 в 1мин. Проходя через облачный покров, воду и растительность, солнечный свет еще больше ослабляется, и в нем значительно изменяется распределение энергии по разным участкам спектра.

Степень ослабления солнечного света и космического излучения зависит от длины волны (частоты) света. Ультрафиолетовое излучение с длиной волны менее 0,3 мкм почти не проходит через озоновый слой (на высоте около 25 км). Такое излучение опасно для живого организма в частности для протоплазмы.

В живой природе свет единственный источник энергии, все растения, кроме бактерий фотосинтезируют, т.е. синтезируют органические вещества из неорганических веществ (т.е. из воды, минеральных солей и СО-В живой природе свет единственный источник энергии, все растения, кроме бактерий 2 — при помощи лучистой энергии в процессе ассимиляции). Все организмы зависят в питании от земных фотосинтезирующих т.е. хлорофиллоносных растений.

Свет как экологический фактор делится на ультрафиолетовый с длиной волны - 0,40 - 0,75 мкм и инфракрасный с длиной волны больше этих величии.

Действие этих факторов зависит от свойства организмов. Каждый вид организма адаптирован к тому или иному спектру длиной волны света. Одни виды организмов адаптировались к ультрафиолетовым, а другие к инфракрасным.

Некоторые организмы способны различить длину волны. Они обладают специальными световоспринимаемыми системами и имеют цветное зрение, которые имеют огромное значение в их жизнедеятельности. Многие насекомые чувствительны к коротковолновому излучение, которое человек не воспринимает. Ночные бабочки хорошо воспринимают ультрафиолетовые лучи. Пчелы и птицы точно определяют свое местонахождение и ориентируются на местности даже ночью.

Организмы сильно реагируют и на интенсивность света. По этим признакам растения делятся на три экологические группы:

1. Светолюбивые, солнцелюбивые или гелиофиты - которые способны нормально развиваться только под солнечными лучами.

2. Тенелюбивые, или сциофиты - это растения нижних ярусов лесов и глубоководные растения, например, ландыши и другие.

При снижении интенсивности света замедляется и фотосинтез. У всех живых организмов существуют пороговые чувствительности интенсивности света, а также к другим экологическим факторам. У различных организмов пороговая чувствительность к экологическим факторам неодинакова. Например, интенсивный свет тормозит развитие мух дрозофилл, даже вызывает их гибель. Не любят свет и тараканы и другие насекомые. У большинства фотосинтетических растений при слабой интенсивности света идет торможение синтеза белков, а у животных тормозятся процессы биосинтеза.

3. Теневыносливые или факультативные гелиофиты. Растения которые хорошо растут и в тени и на свету. У животных эти свойства организмов называются светолюбивые (фотофилы), тенелюбивые (фотофобы), эврифобные — стенофобные.

Экологическая валентность

степень приспособляемости живого организма к изменениямусловий среды. Э. в. представляет собой видовое свойство. Количественно она выражается диапазономизменений среды, в пределах которого данный вид сохраняет нормальную жизнедеятельность. Э. в. можетрассматриваться как в отношении реакции вида на отдельные факторы среды, так и в отношении комплексафакторов.

В первом случае виды, переносящие широкие изменения силы воздействующего фактора,обозначаются термином, состоящим из названия данного фактора с приставкой «эври» (эвритермные — поотношению к влиянию температуры, эвригалинные — к солёности, эврибатные — к глубине и т.п.); виды, приспособленные лишь к небольшим изменениям данного фактора, обозначаются аналогичным термином сприставкой «стено» (стенотермные, стеногалинные и т.п.). Виды, обладающие широкой Э. в. по отношению ккомплексу факторов, называются эврибионтами (См. Эврибионты) в противоположность стенобионтам (См.Стенобионты), обладающим малой приспособляемостью. Поскольку эврибионтность даёт возможностьзаселения разнообразных мест обитания, а стенобионтность резко суживает круг пригодных для вида стаций,эти две группы часто называют соответственно эври- или стенотопными.

Эврибионты , животные и растительные организмы, способные существовать при значительные изменениях условий окружающей среды. Так, например, обитатели морской литорали переносят регулярное осушение во время отлива, летом — сильное прогревание, а зимой — охлаждение, а иногда и промерзание (эвритермные животные); обитатели эстуариев рек выдерживают значит. колебания солёности воды (эвригалинные животные); ряд животных существует в широком диапазоне гидростатического давления (эврибатные животные). Многие наземные обитатели умеренных широт способны выдерживать большие сезонные колебания температуры.

Эврибионтность вида увеличивается способностью переносить неблагоприятные условия в состоянии анабиоза (многие бактерии, споры и семена многих растений, взрослые многолетние растения холодных и умеренных широт, зимующие почки пресноводных губок и мшанок, яйца жаброногих ракообразных, взрослые тихоходки и некоторые коловратки и др.) или спячки (некоторые млекопитающие).

ПРАВИЛО ЧЕТВЕРИКОВА, правило, согласно к-рому в природе все виды живых организмов, представлены не отдельными изолированными особями, а в форме совокупностей числа (иногда очень большого) особей-популяций. Выведено С. С. Четвериковым (1903).

Вид - это исторически сложившаяся совокупность популяций особей, сходных по морфо-физиологическим свойствам, способных свободно скрещиваться между собой и давать плодовитое потомство, занимающих определенный ареал. Каждый вид живых организмов можно описать совокупностью характерных черт, свойств, которые называются признаками вида. Признаки вида, с помощью которых один вид можно отличить от другого, называются критериями вида.

Наиболее часто используют семь общих критериев вида:

1. Специфический тип организации: совокупность характерных признаков, позволяющих отличить особей данного вида от особей другого.

2. Географическая определенность: существование особей вида в конкретном месте на земном шаре; ареал -район обитания особей данного вида.

3. Экологическая определенность: особи вида живут в конкретном диапазоне значений физических факторов среды, таких как температура, влажность, давление и пр.

4. Дифференцированность: вид состоит из более мелких групп особей.

5. Дискретность: особи данного вида отделены от особей другого разрывом - хиатусом.Хиатус определяется действием изолирующих механизмов, таких как несовпадение сроков размножения, использование специфических поведенческих реакций, стерильность гибридов и др.

6. Воспроизводимость: размножение особей может осуществляться бесполым путем (степень изменчивости низкая) и половым (степень изменчивости высокая, так как каждый организм сочетает признаки отца и матери).

7. Определенный уровень численности: численность претерпевает периодические (волны жизни) и непериодические изменения.

Особи любого вида распределяются в пространстве крайне неравномерно. Например, крапива двудомная в пределах своего ареала встречается только во влажных тенистых местах с плодородной почвой, образуя заросли в поймах Рек, ручьев, вокруг озер, по окраинам топей, в смешанных лесах и зарослях кустарников. Колонии европейского кроте, хорошо заметные по холмикам земли, встречаются на лесных опушках, лугах и полях. Подходящие для жизни
места обитания хоть и встречаются часто в пределах ареала, но не покрывают весь ареал, и поэтому на других его участках особи данного вида не встречаются. Нет смысла искать крапиву в сосновом лесу или крота на болоте.

Таким образом, неравномерность распределения вида в пространстве выражается в виде «островков плотности», «сгущений». Участки с относительно высоким распространением данного вида чередуются с участками с низкой численностью. Такие «центры плотности» населения каждого вида и называются популяциями. Популяция - это совокупность особей данного вида, в течение длительного времени (большого числа поколений) населяющих определенное пространство (часть ареала), и изолированная от других таких же совокупностей.

Внутри популяции практически осуществляется свободное скрещивание (панмиксия). Иными словами, популяция - это группа свободно скрепгдвающихся между собой особей, проживающих длительно на определенной территории, и относительно изолированная от других таких же групп. Вид, таким образом, представляет собой совокупность популяций, а популяция является структурной единицей вида.

Отличие популяции от вида:

1) особи разных популяций свободно скрещиваются друг с другом,

2) особи разных популяций слабо различаются между собой,

3) между двумя соседними популяциями нет разрыва, то есть между ними существует постепенный переход.

Процесс видообразования. Предположим, что данный вид занимает определенный ареал, определяемый характером питания. В результате дивергенции между особями увеличивается ареал. В новом ареале будут находиться участки с различными кормовыми растениями, физико-химическими свойствами и т. д. Особи, оказавшиеся в различных участках ареала, формируют популяции. В дальнейшем, в результате все усиливающегося различия между особями популяций, будет все явственнее, что особи одной популяции отличаются по какому-то признаку от особей другой популяции. Происходит процесс дивергенции популяций. В каждой из них накапливаются мутации.

Представители любого вида в локальной части ареала образуют местную популяцию. Совокупность местных популяций, связанных с однородными по условиям жизни участками ареала, составляет экологическую популяцию. Так, если вид обитает на лугу и в лесу, то говорят о его десной и луговой популяциях. Популяции в пределах ареала вида, связанные с определенными географическими границами, называются географическими популяциями.
Размеры и границы популяций могут резко меняться. При вспышках массового размножения вид расселяется очень широко и возникают гигантские популяции.

Совокупность географических популяций с устойчивыми признаками, способностью скрещиваться и давать плодовитое потомство называется подвидом. Дарвин говорил, что образование новых видов идет через разновидности (подвиды).

Следует, однако, помнить, что в природе часто какой-то элемент отсутствует.
Мутации, происходящие у особей каждого подвида, не могут сами по себе привести к образованию новых видов. Причина кроется в том, что данная мутация будет блуждать по популяции, так как особи подвидов, как мы знаем, репродуктивно не изолированы. Если мутация полезна, она увеличивает гетерозиготность популяции, если вредна, то будет попросту отброшена отбором.

В результате постоянно протекающего мутационного процесса и свободного скрещивания в популяциях накапливаются мутации. Создается, по теории И. И. Шмальгаузена , резерв наследственной изменчивости, т. е. подавляющее большинство возникающих мутаций рецессивны и фенотипически не проявляются. По достижении высокой концентрации мутаций в гетерозиготном состоянии делается вероятным скрещивание особей, несущих рецессивные гены. При этом появляются гомозиготные особи, у которых мутации уже проявляются фенотипически. В этих случаях мутации уже подпадают под контроль естественного отбора.
Но это еще не имеет решающего значения для процессу видообразования, потому что природные популяции являются открытыми и в них постоянно вносятся чужеродны^ гены из соседних популяций.

Имеет место поток генов, дjстаточный для поддержания большого сходства генофондов (совокупность всех генотипов) всех местных популяций. Подсчитано, что пополнение генофонда за счет чужеродных генов в популяции, состоящей из 200 особей, каждая из которых имеет 100 ООО локусов, в 100 раз больше, чем-, за счет мутаций. Вследствие этого ни одна популяция не может резко меняться до тех пор, пока она подвержена нормализующему влиянию потока генов. Устойчивость популяции к изменению ее генетического состава под влиянием отбора называется генетическим гомеостазом.

В результате генетического гомеостаза в популяции образование нового вида сильно затруднено. Должно реализоваться еще одно условие! А именно необходима изоляция генофонда дочерней популяции от материнского генофонда. Изоляция может быть в двух формах: пространственной и временной. Пространственная изоляция возникает благодаря различным географическим барьерам, таким как пустыни, леса, реки, дюны, поймы. Чаще всего пространственная изоляция возникает из-за резкого сокращения сплошного ареала и распадения его на отдельные карманы или ниши.

Часто популяция изолируется в результате миграции. таком случае возникает популяция-изолянт. Однако, по-скольку обычно количество особей в популяции-изолянте евелико, существует опасность инбридинга - вырождения, вязанного с близкородственным скрещиванием. Видооб-азование на основе пространственной изоляции называется географическим.

Во временную форму изоляции входит изменение сроков размножения и сдвиги всего цикла жизни. Видообразование на основе временной изоляции называется экологическим.
Решающим же в обоих случаях является создание новой, несовместимой со старой, генетической системы. Через видообразование реализуется эволюция, вот почему говорят о том, что вид является элементарной эволюционной системой. Популяция - элементарная эволюционная единица!

Статистические и динамические характеристики популяций.

Виды организмов входят в биоценоз не отдельными особями, а популяциями или их частями. Популяция - это часть вида (состоит из особей одного вида), занимающая относительно однородное пространство и способная к саморегулированию и поддержанию определенной численности. Каждый вид в пределах занимаемой территории распадается на популяции.Если рассматривать воздействие факторов среды обитания на отдельно взятый организм, то при определенном уровне фактора (например, температуры) исследуемая особь либо выживет, либо погибнет. Картина меняется при изучении воздействия того же фактора на группу организмов одного вида.

Одни особи погибнут или снизят жизненную активность при одной конкретной температуре, другие - при более низкой, третьи - при более высокой.Поэтому можно дать еще одно определение популяции: все живые организмы, для того чтобы выжить и дать потомство, должны в условиях динамичных режимов экологических факторов существовать в виде группировок, или популяций, т.е. совокупности совместно обитающих особей, обладающих сходной наследственностью.Важнейшим признаком популяции является занимаемая ею общая территория. Но в пределах популяции могут быть более или менее изолированные по разным причинам группировки.

Поэтому дать исчерпывающее определение популяции затруднительно из-за размытости границ между отдельными группами особей. Каждый вид состоит из одной или нескольких популяций, и популяция, таким образом, - это форма существования вида, его наименьшая эволюционирующая единица. Для популяций различных видов существуют допустимые пределы снижения численности особей, за которыми существование популяции становится невозможным. Точных данных о критических значениях численности популяций в литературе нет. Приводимые значения разноречивы. Остается, однако, несомненным факт, что чем мельче особи, тем выше критические значения их численности. Для микроорганизмов это миллионы особей, для насекомых - десятки и сотни тысяч, а для крупных млекопитающих - несколько десятков.

Численность не должна уменьшаться ниже пределов, за которыми резко снижается вероятность встречи половых партнеров. Критическая численность также зависит от других факторов. Например, для некоторых организмов специфичен групповой образ жизни (колонии, стаи, стада). Группы внутри популяции относительно обособлены. Могут иметь место такие случаи, когда численность популяции в целом еще достаточно велика, а численность отдельных групп уменьшена ниже критических пределов.

Например, колония (группа) перуанского баклана должна иметь численность не менее 10 тыс. особей, а стадо северных оленей - 300 - 400 голов. Для понимания механизмов функционирования и решения вопросов использования популяций большое значение имеют сведения об их структуре. Различают половую, возрастную, территориальную и другие виды структуры. В теоретическом и прикладном планах наиболее важны данные о возрастной структуре - соотношение особей (часто объединенных в группы) различных возрастов.

У животных выделяют следующие возрастные группы:

Ювенильная группа (детская) сенильная группа (старческая, не участвующая в воспроизводстве)

Взрослая группа (особи, осуществляющие репродукцию).

Обычно наибольшей жизнеспособностью отличаются нормальные популяции, в которых все возраста представлены относительно равномерно. В регрессивной (вымирающей) популяции преобладают старческие особи, что свидетельствует о наличии отрицательных факторов, нарушающих воспроизводительные функции. Требуются срочные меры по выявлению и устранению причин такого состояния. Внедряющиеся (инвазионные) популяции представлены в основном молодыми особями. Жизненность их обычно не вызывает опасений, но велика вероятность вспышек чрезмерно высокой численности особей, поскольку в таких популяциях не сформировались трофические и другие связи.

Особенно опасно, если это популяция видов, ранее отсутствовавших на данной территории. В таком случае популяции обычно находят и занимают свободную экологическую нишу и реализуют свой потенциал размножения, интенсивно увеличивая численность.Если популяция находится в нормальном или близком к нормальному состоянии, человек может изымать из нее количество особей (у животных) или биомассу (у растений), которая прирастает за промежуток времени между изъятиями. Изыматься должны прежде всего особи послепродуктивного возраста (окончившие размножение). Если преследуется цель получения определенного продукта, то возраст, пол и другие характеристики популяций корректируются с учетом поставленной задачи.

Эксплуатация популяций растительных сообществ (напр., для получения древесины), обычно приурочивается к периоду возрастного замедления прироста (накопления продукции). Этот период обычно совпадает с максимальным накоплением древесной массы на единице площади. Популяции свойственно также определенное соотношение полов, причем соотношение самцов и самок не равно 1:1. Известны случаи резкого преобладания того или иного пола, чередование поколений с отсутствием самцов. Каждая популяция может иметь и сложную пространственную структуру, (подразделяясь на более или менее крупные иерархические группы - от географической до элементарной (микропопуляции) .

Так, если уровень смертности не зависит от возраста особей, то кривая выживания представляет собой снижающуюся линию (см. рисунок, тип I). То есть отмирание особей происходит в данном типе равномерно, коэффициент смертности остается постоянным на протяжении всей жизни. Такая кривая выживания свойственна видам, развитие которых происходит без метаморфоза при достаточной устойчивости рождающегося потомства. Этот тип принято называть типом гидры - для нее свойственна кривая выживания, приближающаяся к прямой линии. У видов, для которых роль внешних факторов в смертности невелика, кривая выживания характеризуется небольшим понижением до определенного возраста, после которого происходит резкое падение в следствие естественной (физиологический) смертности.

Тип II на рисунке. Близкий к этому типу характер кривой выживания свойственен человеку (хотя кривая выживания человека несколько более пологая и, таким образом, является чем-то средним между типами I и II). Этот тип носит названия типа дрозофиллы: именно его демонстрируют дрозофиллы в лабораторных условиях (не поедаемые хищниками). Для очень многих видов характерна высокая смертность на ранних стадиях онтогенеза. У таких видов кривая выживания характеризуется резким падением в области младших возрастов. Особи, пережившие "критический" возраст, демонстрируют низкую смертность и доживают до больших возрастов. Тип носит название типа устрицы. Тип III на рисунке. Изучение кривых выживания представляет большой интерес для эколога. Оно позволяет судить о том, в каком возрасте тот или иной вид наиболее уязвим. Если действие причин, способных изменить рождаемость или смертность, приходится на наиболее уязвимую стадию, то их влияние на последующее развитие популяции будет наибольшим. Эту закономерность необходимо учитывать при организации охоты или в борьбе с вредителями.

Возрастная и половая структуры популяций.

Любой популяции присуща определенная организация. Распределение особей по территории, соотношение групп особей по полу, возрасту, морфологическим, физиологическим, поведенческим и генетическим особенностям отражают соответствующую структуру популяции : пространственную, половую, возрастную и т.д. Структура формируется с одной стороны на основе общих биологических свойств видов, а с другой - под влиянием абиотических факторов среды и популяций других видов.

Структура популяции имеет, таким образом, приспособительный характер. Разные популяции одного вида имеют как сходные особенности, так и отличительные, характеризующие специфику экологических условий в местах их обитания.

В целом, кроме адаптивных возможностей отдельных особей, на определенных территориях формируются приспособительные черты групповой адаптации популяции как надиндивидуальной системы, что говорит о том, что приспособительные особенности популяции гораздо выше, чем у слагающих ее индивидов.

Возрастной состав — имеет важное значение для существования популяции. Средняя продолжительность жизни организмов и соотношение численности (или биомассы) особей различного возраста характеризуется возрастной структурой популяции. Формирование возрастной структуры происходит в результате совместного действия процессов размножения и смертности.

В любой популяции условно выделяются 3 возрастные экологические группы:

Предрепродуктивную;

Репродуктивную;

Пострепродуктивную.

К предрепродуктивной группе относятся особи, еще не способные к воспроизведению. Репродуктивная - особи, способные к размножению. Пострепродуктивная - особи, утратившие способность к размножению. Длительность этих периодов сильно варьируется в зависимости от вида организмов.

При благоприятных условиях в популяции имеются все возрастные группы и поддерживается более или менее стабильный возрастной состав. В быстро растущих популяциях преобладают молодые особи, а в сокращающихся — старые, уже не способные интенсивно размножаться. Такие популяции малопродуктивны, недостаточно устойчивы.

Имеются виды с простой возрастной структурой популяций, которые состоят из особей практически одного возраста.

Например, все однолетние растения одной популяции весной находятся в стадии проростков, затем почти одновременно зацветают, а осенью дают семена.

У видов со сложнойвозрастной структурой популяций одновременно живут несколько поколений.

Например, в стажах слонов имеются молодые, зрелые и стареющие животные.

Популяции, включающие много генераций (разных возрастных групп) более устойчивы, менее подвержены влиянию факторов, воздействующих на размножение или смертность в конкретном году. Экстремальные условия могут привести к гибели наиболее уязвимых возрастных групп, но самые устойчивые выживают и дают новые генерации.

Например, человек рассматривается как биологический вид, имеющий сложную возрастную структуру. Устойчивость популяций вида проявилось, например, во время второй мировой войны.

Для исследования возpастных стpуктуp популяций используют гpафические пpиемы, напpимеp возpастные пиpамиды популяции, шиpоко используемые в демогpафических исследованиях (рис.3.9).


Рис.3.9. Возрастные пирамиды популяции.

А - массовое размножение, В - стабильная популяция, С - сокращающаяся популяция

Устойчивость популяций вида в значительной степени зависит и от половой структуры , т.е. соотношения особей разных полов. Половые группировки внутри популяций формируются на базе различий в морфологии (форма и строение тела) и экологии различных полов.

Например, у некоторых насекомых самцы имеют крылья, а самки нет, у самцов некоторых млекопитающих имеются рога, но они отсутствуют у самок, у самцов птиц яркое оперение, а у самок маскирующее.

Экологические различия выражаются в пищевых предпочтениях (самки многих комаров сосут кровь, а самцы питаются нектаром).

Генетический механизм обеспечивает примерно равное соотношение особей обоих полов при рождении. Однако исходное соотношение вскоре нарушается в результате физиологических, поведенческих и экологических различий самцов и самок, вызывающих неравномерную смертность.

Анализ возрастной и половой структуры популяций позволяет прогнозировать ее численность на ряд ближайших поколений и лет. Это важно при оценке возможностей промысла рыбы, отстрела животных, спасения урожая от нашествий саранчи и в других случаях.