Графика - Портал рукоделия

Стадии звездной эволюции. Как умирают звёзды

Вполне естественно, что звёзды – не живые существа, но и они проходят через эволюционные этапы, сходные с рождением, жизнью и смертью. Подобно человеку, звезда на протяжении своей жизни подвергается радикальным изменениям. Но надо отметить, живут они явно подольше – миллионы и даже миллиарды земных лет.

Как рождаются звезды? Изначально, вернее после Большого Взрыва, материя во Вселенной была распределена неравномерно. Звезды начали образовываться в туманностях – гигантских облаках межзвездной пыли и газов, в основном водорода. На эту материю воздействует гравитация, и происходит сжатие части туманности. Тогда образуются круглые и плотные газопылевых облака – глобулы Бока. По мере того, как такая глобула продолжает сгущаться, её масса увеличивается за счет притяжения к себе материи из туманности. Во внутренней части глобулы сила гравитации наиболее сильна, и она начинает разогреваться и вращаться. Это – уже протозвезда. Атомы водорода начинают бомбардировать друг друга и вырабатывают тем самым большое количество энергии. В конце концов температура центральной части достигает температуры порядка пятнадцати миллионов градусов Цельсия, формируется ядро новой звезды. Новорожденная вспыхивает, начинает гореть и светиться. Как долго это будет продолжаться, зависит от того, какова была масса родившейся звезды. То, что я рассказывал на прошлой нашей встрече. Чем масса больше, тем жизнь звезды короче.
Кстати говоря, именно от массы зависит, сможет ли протозвезда стать звездой. Согласно расчетам, для того, чтобы это сжимающееся небесное тело превратилось в звезду, его масса должна быть не менее 8% от массы Солнца. Глобула меньших размеров, сгущаясь, будет постепенно охлаждаться и превратится в переходный объект, нечто среднее между звездой и планетой. Такие объекты называются коричневыми карликами.

Планета Юпитер, например, слишком мала для того, чтобы стать звездой. Если бы Юпитер был массивней, возможно, в его недрах начались бы термоядерные реакции, и наша Солнечная система была бы системой двойной звезды. Но это всё лирика…

Итак, основной этап жизни звезды. Большую часть своего существования звезда находится в равновесном состоянии. Сила гравитации стремится сжать звезду, а энергия, высвобожденная в результате протекающих в звезде термоядерных реакций, вынуждает звезду расширятся. Эти две силы создают устойчивое положения равновесия – настолько устойчивое, что звезда так живёт миллионы и миллиарды лет. Эта фаза жизни звезды обеспечивает ей место в главной последовательности. -


Просияв миллионы лет, крупная звезда, то есть звезда по меньшей мере вшестеро тяжелее Солнца, - начинает выгорать. Когда в ядре заканчивается водород, звезда расширяется и охлаждается, превращаясь в красный сверхгигант. Затем этот сверхгигант будет сжиматься, пока наконец не взорвется чудовищной и драматической сверкающей вспышкой, получившей название сверхновой звезды. Тут надо отметить, что очень массивные голубые сверхгиганты минуют стадию превращения в красный сверхгигант и куда быстрее взрываются сверхновой.
Если оставшееся ядро сверхновой мало, то начинается его катастрофическое сжатие (гравитационный коллапс) в очень плотную нейтронную звезду, а если оно достаточно большое, то будет сжиматься ещё сильнее, образуя чёрную дыру.

Несколько иная кончина у обычной звезды. Такая звезда живёт дольше и умирает более спокойной смертью. Солнце, например, будет гореть ещё пять миллиардов лет, прежде чем в его ядре иссякнет водород. Его внешние слои затем станут расширяться и охлаждаться; образуется красный гигант. В таком виде звезда может просуществовать порядка 100 миллионов лет на гелии, образовавшемся за время жизни в её ядре. Но и гелий выгорает. В довершении всего внешние слои отнесет прочь – они образуют планетарную туманность, а из ядра сожмётся плотный белый карлик. Хотя белый карлик достаточно горяч, в конце концов и он охладится, превратившись в мёртвую звезду, которую называют чёрным карликом.

Жизненный цикл звезд

Обычная звезда выделяет энергию за счет превращения водорода в гелий в ядерной печи, находящейся в ее сердцевине. После того как звезда израсходует водород в центре, он начинает перегорать в оболочке звезды, которая увеличивается в размере, разбухает. Размер звезды возрастает, температура ее падает. Этот процесс порождает красных гигантов и сверхгигантов. Продолжительность жизни каждой звезды определяется ее массой. Массивные звезды заканчивают свой жизненный цикл взрывом. Звезды, подобные Солнцу, сжимаются, превращаясь в плотные белые карлики. В процессе превращения из красного гиганта в белого карлика звезда может сбросить свои наружные слои, как легкую газовую оболочку, обнажив ядро.

Из книги ЧЕЛОВЕК И ЕГО ДУША. Жизнь в физическом теле и астральном мире автора Иванов Ю М

Из книги Большая Советская Энциклопедия (ЖИ) автора БСЭ

Из книги Путешественники автора Дорожкин Николай

Из книги Экономика недвижимости автора Бурханова Наталья

Сложный жизненный маршрут Отношение наших отечественных учёных к Свену Гедину претерпевало значительные изменения. Причины кроются как в характере самого Гедина, так и в политических ситуациях его времени. С юности зная русский язык и испытывая симпатии к России и её

Из книги Финансы: Шпаргалка автора Автор неизвестен

4. Жизненный цикл объектов недвижимого имущества Так как объекты недвижимого имущества в течение времени своего существования подвергаются экономическим, физическим, правовым изменения, то любая недвижимая вещь (за исключением земли) проходит следующие стадии

Из книги Все обо всем. Том 5 автора Ликум Аркадий

47. ВОЗДЕЙСТВИЕ ФИНАНСОВ НА ЖИЗНЕННЫЙ УРОВЕНЬ НАСЕЛЕНИЯ Социально-экономическая сущность финансовых отношений состоит в исследовании вопроса, за счет кого государство получает финансовые ресурсы и в чьих интересах используются эти средства.Значительная часть

Из книги Организационное поведение: Шпаргалка автора Автор неизвестен

Далеко ли до звезд? Во Вселенной есть звезды, которые находятся так далеко от нас, что у нас даже нет возможности узнать расстояние до них или установить их количество. Но как далека от Земли ближайшая звезда? Расстояние от Земли до Солнца 150 000 000 километров. Так как свет

Из книги Маркетинг: Шпаргалка автора Автор неизвестен

50. ЖИЗНЕННЫЙ ЦИКЛ ОРГАНИЗАЦИИ Широко распространено понятие жизненного цикла организации – ее изменения с определенной последовательностью состояний при взаимодействии с окружающей средой. Существуют определенные этапы, через которые проходят организации, и

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

45. ЖИЗНЕННЫЙ ЦИКЛ ТОВАРА Жизненный цикл товара – это изменение объема продаж и прибылей на протяжении времени его жизни. Товар имеет стадию зарождения, роста, зрелости и конец – «смерть», уход.1. Стадия «разработка и вывод на рынок». Это период инвестиций в маркетинговые

Из книги 200 знаменитых отравлений автора Анцышкин Игорь

2.7. Клетка – генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Особенности соматических и половых клеток. Жизненный цикл клетки: интерфаза и митоз. Митоз – деление соматических клеток. Мейоз. Фазы

Из книги Краткий справочник необходимых знаний автора Чернявский Андрей Владимирович

4.5.1. Жизненный цикл водорослей Отдел Зеленые водоросли включает в себя одноклеточные колониальные и многоклеточные растения. Всего около 13 тыс. видов. К одноклеточным относятся хламидомонада, хлорелла. Колонии образованы клетками вольвокса и пандорины. К многоклеточным

Из книги Популярный звездочет автора Шалашников Игорь

ЖЕРТВЫ ЗВЕЗД Итальянский математик Кардано был и философом, и медиком, и астрологом. Сперва он занимался исключительно медициной, но с 1534 года состоял профессором математики в Милане и Болонье; однако для увеличения своих скромных доходов профессор не оставлял

Из книги Новейший философский словарь автора Грицанов Александр Алексеевич

25 ближайших звезд mV - визуальная звездная величина; r - расстояние до звезды, пк; L - светимость (мощность излучения) звезды, выражена в единицах светимости Солнца (3,86–1026

Из книги Я познаю мир. Вирусы и болезни автора Чирков С. Н.

Виды звезд В сравнении с другими звездами во Вселенной Солнце является звездой-карликом и относится к категории нормальных звезд, в недрах которых происходит превращение водорода в гелий. Так или иначе, но виды звезд примерно описывают жизненный цикл одной отдельно

Из книги автора

"ЖИЗНЕННЫЙ МИР" (Lebenswelt) - одно из центральных понятий поздней феноменологии Гуссерля, сформулированное им в результате преодоления узкого горизонта строго феноменологического метода за счет обращения к проблемам мировых связей сознания. Такое включение "мировой"

Из книги автора

Жизненный цикл вируса Каждый вирус проникает в клетку своим, только ему свойственным путем. Проникнув, он должен прежде всего снять верхнюю одежду, чтобы обнажить, хотя бы частично, свою нуклеиновую кислоту и начать ее копирование.Работа вируса хорошо организована.

ЭВОЛЮЦИЯ ЗВЁЗД - изменение со временем физ. параметров и наблюдаемых характеристик звёзд в результате. протекания ядерных реакций, энергии и потери массы. Для звёзд в тесных двойных системах существ, роль играет обмен веществом между компаньонами. Об эволюции таких звёзд см. в ст. Тесные двойные звёзды .

Осн. наблюдаемыми характеристиками звезды являются её светимость L (при известном расстоянии) и темп-ра Г, поверхности звезды, определяемая по распределению энергии в спектре. Приближённо Т s равна эффективной температуре T э . Э. з. представляется в виде линии (трека) на плоскости lg L , lg T э (т. е. на Герцшпрунга - Pесселлa диаграмме , ГРД).

Введение

Звёзды рождаются из плотных межзвёздных облаков, в к-рых развиваются тепловые и гидродинамич. неустойчивости (см. Звездообразование) . Следствием этих неустой-чивостей является гидродинамич. коллапс части облака, заканчивающийся образованием гравитационно связанного объекта - протозвезды. Коллапс происходит неоднородно. Быстрое сжатие центр, части приводит к образованию гидростатически равновесного ядра массой (для полной массы коллапсирующего облака масса Солнца), а затем следует длительная стадия аккреции на него оставшейся части облака (оболочки). Время образования протозвезды от начала коллапса составляет 10 -10 6 лет. Протозвезды светят за счёт выделения гра-витац. энергии при сжатии. Нек-рый вклад в светимость дают также с участием
, малые кол-ва к-рых образовались на оолее ранних этапах эволюции Вселенной (см. Нуклеосинтез ).По мере увеличения массы и сжатия темп-pa центр. областей ядра протозвезды растёт. Когда она достигает значений ~ 10 7 К (что возможно для звёзд с массой, превышающей начинается горение водорода (термоядерные реакции превращения водорода в гелий). Потери энергии на излучение компенсируются энергией, выделяющейся при горении водорода. Звезда выходит на гл. последовательность (ГП) ГРД. Подробнее о нач. этапе Э. з. см. в ст. Протозвезды .
Образование звёзд сопровождается истечением вещества оболочки, так что масса звезды на ГП меньше нач. массы коллапсирующего облака. Наблюдения показывают, что на стадии протозвезды скорость потери массы у звёзд ссоставляет(звёзды типа T Тельца). За время прихода на ГП (от 6*10 6 лет для до 2·10 7 лет длямасса звезды уменьшится наСветимость звёзд быстро растёт с увеличением их массы (см. Масса - светимость зависимость) . У звёзд с светимость на стадии аккреции оказывается столь большой, что вызывает мощное истечение вещества, и масса рождающейся звезды M оказывается значительно меньше нач. массы M 0 коллапсирующего облака:для

Звезда, излучающая за счёт выделения ядерной энергии, медленно эволюционирует по мере изменения её хим. состава. Наиб. время звезда проводит на стадии, когда в её центр. области горит водород. Эта стадия наз. ГП на ГРД. Б. ч. наблюдаемых звёзд расположена вблизи ГП. Большая длительность этой стадии связана, во-первых, с тем, что водород является самым калорийным ядерным топливом. При образовании одного ядра гелия (альфа-частицы) из 4 ядер водорода выделяетсяа при образовании углерода 12 C из 3 альфа-частиц выделяется всего , т. е. выделение энергии на единицу массы в 10 раз меньше. Во-вторых, звёзды на ГП значительно меньше излучают, чем на последующих стадиях эволюции, и в итоге оказывается, что время жизни на ГП на два - три порядка больше, чем время всей последующей эволюции. Соответственно кол-во звёзд на ГП существенно превышает число более ярких звёзд.

После выгорания водорода в центре звезды и образования гелиевого ядра выделение ядерной энергии в нём прекращается и ядро начинает интенсивно сжиматься. Водород продолжает гореть в тонкой оболочке, окружающей гелиевое ядро (т. н. слоевой источник). Оболочка при этом расширяется, светимость звезды растёт, поверхностная темп-pa уменьшается, и звезда становится красным гигантом (в случае менее массивных звёзд) или сверхгигантом (красным или жёлтым) в случае более массивных звёзд (см. Красные гиганты и сверхгиганты) . Процесс последующей эволюции определяется в основном массой звезды M .

В звёздах сядерное горение заканчивается после образования углеродного (12 C) с примесью кислорода звёздного ядра массой ок. 1. После сброса всей оболочки, окружающей это ядро, оно превращается в "мёртвую" звезду - белый карлик .
Массивные звёздыпроходят эволюц. путь горения вплоть до образования звёздного ядра из самого стабильного (макс. энергия связи на нуклон) элемента 56 Fe. В таком ядре выделение ядерной энергии невозможно, рост давления не компенсирует рост сил тяготения при росте и медленное квазистатич. сжатие сменяется быстрым коллапсом - происходит потеря гидродинамич. устойчивости и взрыв сверхновой звезды . При быстром сжатии до плотности r, близкой к плотности вещества в атомном ядре, выделяется огромное кол-во гравитац. энергии -в раз больше, чем за всё время ядерной эволюции, длящейся десятки млн. лет. Подавляющая часть этой энергии уносится нейтрино. После взрыва и сброса оболочки образуется остаток в виде нейтронной звезды - второй тип "мёртвых" звёзд.
В звёздах промежуточной массыобразуется вырожденное углеродно-кислородное ядро, масса к-рого столь велика, что оно уже не может существовать в виде белого карлика, а продолжает сжиматься до тех пор, пока рост темп-ры и плотности не приведёт к быстрому (взрывному) сгоранию углерода (углеродная вспышка) и полному разлёту всей звезды. Этот разлёт также наблюдается как взрыв сверхновой, на месте к-рого не остаётся никакого остатка.

Наконец для самых массивных звёзд коллапс может не остановиться на стадии нейтронной звезды, а продолжиться дальше, образуя релятивистский объект - чёрную дыру . Наблюдат. проявления процесса образования чёрной дыры пока не известны. Возможно, рост светимости здесь столь незначителен, что такой коллапс трудно обнаружить ("беззвучный" коллапс). Однако даже в этом случае коллапс должен сопровождаться мощным всплеском нейтринного излучения, почти как при образовании нейтронной звезды, и, кроме того, исчезнет (погаснет) звезда, существовавшая до начала коллапса.

На протяжении практически всей эволюции звезда устойчива относительно разл. типов возмущений. Наиб. важны два типа возмущений: гидродинамические и тепловые. Гидродинамич. возмущения связаны со случайными возмущениями плотности и размера звезды. Устойчивость относительно таких возмущений обеспечивается тем, что при сжатии (расширении) силы давления P растут (падают) быстрее сил тяготения. Это приводит к тому, что при случайном сжатии или расширении возникает сила, возвращающая звезду к её равновесному состоянию. Изменение давления при быстрых процессах происходит почти адиабатически, поэтому устойчивость определяется показателем адиабаты к-рый должен быть больше 4/3 (S - уд. энтропия; см. в ст. Гравитационный коллапс) . T. к. давление вещества в звезде определяется смесью идеального газа с излучением,и, как правило, звёзды гидродинамически устойчивы. Примером неустойчивой звезды может служить предсверхновая с железным ядром, в к-ром рост давления при сжатии недостаточен. Значит, часть энергии тратится на фоторасщепление железа с образованием нейтронов, протонов и альфа-частиц, а g существенно уменьшается и может приближаться к единице.

Устойчивость относительно тепловых возмущений обеспечивается отрицательной теплоёмкостью звезды. Отрицат. теплоёмкость можно объяснить на основе теоремы вириала. В применении к звёздам, к-рые описываются ур-нием состояния с показателем адиабаты 5/3, эта теорема гласит, что в равновесии тепловая энергия звезды составляет половину абс. величины её гравитац. энергии (отрицательной), т. е. полная энергия звезды отрицательна и равна половине гравитационной.

Любое случайное выделение энергии увеличивает полную энергию звезды, т. е. уменьшает её абс. величину. Поэтому в новом положении равновесия звезда должна расшириться, чтобы уменьшить по абс. величине значение гравитац. энергии. В соответствии с этим значение тепловой энергии звезды (а значит, и темп-ры) в новом состоянии уменьшится, т. к. она составляет половину абс. величины гравитац. энергии. T. о., выделение энергии приводит к уменьшению темп-ры, что и наз. отрицат. теплоёмкостью. При отрицат. теплоёмкости случайное выделение тепла уменьшит темп-ру, а значит, и уменьшит выделение тепла в ядерных реакциях, скорость к-рых быстро падает с уменьшением темп-ры. Наоборот, случайная потеря энергии будет скомпенсирована сжатием и ростом скорости тепловыделения.

На нек-рых критич. стадиях теплоёмкость звезды становится положительной. Тогда развивается тепловая неустойчивость и происходит тепловая вспышка. Наиб, очевиден механизм развития тепловой неустойчивости при наличии вырожденного ядра, где давление и внутр. энергия вещества практически не зависят от темп-ры. В этом случае тепловыделение приводит к росту темп-ры, к-рый не влияет на рост давления и потому не сопровождается расширением. T. к. скорость ядерных реакций быстро растёт с ростом темп-ры, происходят самоускоряющееся выделение ядерной энергии и тепловая вспышка (ядерный взрыв).

Процессы, определяющие Э. з., протекают с разными характерными временами, из к-рых отметим гидродинамическоетепловоеи ядерное Гидродинамич. время характеризует скорость изменения параметров звезды при движениях вещества со скоростями, сравнимыми со скоростью звука u зв . По порядку величиныгде R - характерный размер звезды. Для равновесной звезды Гидродинамич. время порядка времени свободного падения:
Тепловое время определяет скорость охлаждения или нагрева звезды. При охлаждении в отсутствие ядерного горения поскольку запас энергии порядка гравитац. энергии звезды; в этом случае t th часто наз. временем Кельвина - Гельмгольца. В случае быстрого ядерного горения в отсутствие Гидродинамич. движений, когдавремя нагревагде-скорость энерговыделения, а С v -теплоёмкость при пост, объёме.

Ядерное времяопределяет скорость изменения хим. состава (концентраций элементов) при ядерном горении. Обычно используют концентрацию (содержание) по массе X i - долю массы единицы объёма, приходящуюся на данный элемент i . Ядерное время очень резко (экспоненциально) зависит от темп-ры. В нормальных звёздах, где поддерживается гидростатич. равновесие, это время, как правило, много больше др. характерных времён. При быстром ядерном горении t n связано с тепловым временем:


где q -калорийность ядерного топлива (энергия, выделяющаяся при сгорании единицы массы топлива
На протяжении почти всей Э. з.- начиная от стадии молодой сжимающейся звезды до поздних стадий - время является минимальным. из всех характерных времён. Только в предсверхновых, где имеет место ядерное равновесие (равновесие относительно реакций сильного взаимодействия), времяявляется наименьшим. Обычно в звезде сохраняется приблизит, равновесие относительно быстрых процессов (напр., гидростатич. равновесие), а время эволюции определяется одним из медленных процессов.

На стадии гравитац. сжатия выполняется неравенство Звезда находится в гидростатич. равновесии, эволюция определяется потерей энергии (с характерным временема осн. ядерные реакции практически не протекают.

На ГП это неравенство сохраняется, но эволюция определяется ядерными реакциямии имеет место гидроста-тич. и тепловое равновесие.
После образования гелиевого ядра, сжатия центральных областей и расширения оболочки скорость ядерных реакций в центре звезды возрастает настолько, что t n становится порядкаПри этом осн. отклонения от теплового равновесия происходят в массивной оболочке вокруг гелиевого ядра. Гидродинамич. время остаётся минимальным, и гидростатич. равновесие звезды не нарушается.

При вспышке в углеродно-кислородном ядре, приводящей к полному разлёту звезды, кактак иоказываются много меньше t h , что и приводит к нарушению гидростатич. равновесия и взрыву.

В ядрах массивных предсверхновых, где имеет место ядерное равновесие, значениеминимально и Э. з. определяется скоростью потери энергиикак в молодых сжимающихся звёздах. Она заканчивается потерей гидро-динамич. устойчивости и быстрым коллапсом. Гидродинамич. неустойчивость связана не с изменениема с изменением структуры равновесного состояния звезды. Развитие тепловой неустойчивости связано с быстрым уменьшениеми заканчивается взрывом, когда эти времена становятся меньше

Итак, если исключить неск. критич. моментов, звёзды в своей массе глобально устойчивы относительно механич. и тепловых возмущений. Разнообразие свойств вещества звёзд, в частности наличие зон перем. , тонких слоев горения, протяжённых оболочек, приводит к развитию локальных неустойчивостей, к-рые не ведут к разрушению звезды, т. к. обычно стабилизируются нелинейными эффектами при достижении конечных амплитуд возмущений. Существование нек-рых типов переменных звёзд связано с развитием подобных локальных неустойчивостей.

Осн. фактором, определяющим распределение темп-ры в звезде, является скорость потери энергии (светимость), зависящая от непрозрачности звёздных недр. Скорость Э. з. без источников энергии определяется запасами тепловой и гравитац. энергии и скоростью остывания, а "включение" ядерных реакций эквивалентно увеличению запасов тепловой энергии и уменьшению скорости эволюции. Фак-тич. светимость звезды определяется её структурой и не зависит от скорости протекания ядерных реакций. Рассмотрим, напр., переход от стадии гравитац. сжатия к стадии ГП звезды с Если бы звезда излучала только за счёт запаса гравитац. энергии, то характерное время её жизни (время Э. з.) составляло былет. По мере излучения энергии и сжатия темп-pa в центре звезды растёт и ядерное тепловыделение увеличивается до тех пор, пока не уравновесит потери на излучение (светимость). Начиная с этого момента гравитац. сжатие прекращается и звезда "застывает" на ГП, пока не выгорит водород и не образуется гелиевое ядро. Для такой звезды за счёт горения водорода время жизни увеличивается почти на три порядка, достигая ~ 10 10 лет. Аналогично горение очередного ядерного горючего "замораживает" звезду в нек-ром др. состоянии. Точку (на ГРД). в к-рой происходит "замораживание" звезды, определяет зависимость скорости ядерных реакций данного горючего от темп-ры. Чем больше ядра горючего, тем большая темп-ра требуется для обеспечения данной скорости тепловыделения (из-за роста высоты кулоновского барьера ядра горючего). Однако при росте темп-ры и плотности светимость звезды, являющаяся ф-цией состояния, также возрастает. Поэтому по мере эволюции и образования всё более тяжёлых элементов в центр. ядре светимость растёт почти монотонно.

При высокой темп-ре всё большую роль в охлаждении звезды играют нейтринные потери. На поздних стадиях нейтринные потери на несколько порядков превышают потери на излучение фотонов и соответственно ускоряют Э. з.

Уравнения эволюции звёзд

Обычно (для упрощения расчётов) звезда считается невращающейся и сферически-симметричной. В процессе эволюции осн. масса звезды находится в состоянии гидростатич. равновесия, определяемого ур-нием

где-масса, содержащаяся внутри радиуса r ,

Плотность,-давление, определяемое ур-нием состояния

Здесь первый член - давление газа, второй - излучения, - газовая постоянная, а - постоянная плотности излучения.Для звёзд массойна ГП играют роль поправки к ур-нию состояния, связанные с неидеальностью вещества. Распределение темп-ры определяется ур-нием энергии

(E -внутр. энергия единицы массы,-скорость потери энергии единицей массы вещества за счёт нейтринного излучения), ур-ниями переноса тепла

В зоне лучистого равновесия (к - непрозрачность),

в конвективной зоне и

в конвективном ядре с пост. энтропией S . Конвективный поток энергии F c в оболочке рассчитывается по приближённой теории пути перемешивания (см. Конвективная неустойчивость) .

Ур-ния равновесия решаются для граничных условий в центре (r = 0, L = 0 при т = 0) и на уровне фотосферы , где оптическая толщина


при m = M . Последнее условие усложняется для звёзд на стадии красных сверхгигантов и гигантов, когда звезда имеет протяжённую оболочку небольшой плотности и большую светимость.

В процессе ядерного горения происходят медленное изменение хим. состава звезды и, как следствие, изменения всех её параметров. Осн. ур-ниями, описывающими эволюцию хим. состава, являются:


Здесь: т p , m a , и m 12C - массы протона, a-частицы и углеродаи-содержания (по массе) водорода, гелия и-скорость энерговыделения и энерге-тич. выход для соответствующих цепочек ядерных реакций (см. ниже). При расчётах поздних стадий эволюции массивных звёзд учитывают горение более тяжёлых элементов. У звёзд с массой меньше и центр, темп-рой

Т с меньше ~ 1,5-10 7 К осн. источником ядерной энергии являются реакции водородного цикла (рр-цикл). При больших массах и центр, темп-pax звёзд водород горит преим. в углеродно-азотном цикле (CNO-цикл). Cp. кол-во энергии, выделяющееся при синтезе одного ядра 4 He (за вычетом энергии, уносимой нейтрино): в рр-цикле 26,2 МэВ, а в CNO-цикле МэВ. Соответствующие скорости энерговыделения:

(T 9 - темп-pa в млрд. К, r в г/см 3). Появление конвективного ядра у звёзд сна ГП связано с переходом от рр- к CNO-циклу, обладающему более резкой зависимостью скорости горения от темп-ры. Горение гелия протекает в т. н. За-реакции - реакции слияния трёх ядер Не:

Зa-реакция сопровождается реакцией к-рой соответствует

Выделение тепла при образовании одного ядра 12 C и 16 O соответственно равно
Построение модели звезды (см. также Моделирование звёзд )в момент требует знания её состояния на предыдущем временном шаге численной модели t n-1 для нахождения скорости выделения гравитац. энергии

и определения хим. состава

где-правые части ур-ний (7),Наряду с явной схемой шага по времени, приведённой выше, используют неявную, когда F i , Р/ r 2 вычисляются в момент t n или представляют собой линейную комбинацию значений, взятых в моменты Решение системы обыкновенных дифференц. ур-ний (1) - (6) осложняется наличием особых точек в центре звезды и приПоэтому интегрирование ведётся навстречу из центра и с поверхности со сшивкой в к--л. промежуточной точке [метод Шварцшильда (M. Schwarzschild) ]. Из условий сшивки находят центр, значения r с, T с, а также L и T э . Др. способ решения состоит в разбиении звезды на N сферич. слоев и замене дифференц. ур-ний разностными [метод Хеньи (L. Непуеу)]. Последний метод лучше приспособлен для использования ЭВМ. Для построения гидростатич. моделей применяют также метод, основанный на решении гидродинамич. нестационарных ур-ний с вязкостью.

Ядерная эволюция звёзд

Расчёты Э. з. представляются в виде треков на ГРД. Как уже отмечалось, б. ч. времени жизни звёзды проводят на ГП.
Время жизни такой звезды на ГП (точка А на рис. 1) ок. 10 10 лет, а её строение аналогично строению Солнца . На протяжении этой стадии в центр, областях звезды водород "перегорает" в гелий. Когда масса гелиевого ядра достигает ~ 10% массы звезды, становится заметным отход от ГП (точка В) . Небольшое увеличение светимости на участке AB связано с уменьшением непрозрачности из-за уменьшения числа электронов при синтезе гелия из водорода. После выгорания водорода в центре звезды и образования гелиевого ядра отвод энергии из него может компенсироваться только энергией, выделяющейся при сжатии. Это приводит к сжатию и нагреву оболочки, сохранившей водород, к-рый загорается в тонком слое, окружающем гелиевое ядро (слоевой источник).

Энергия, выделяющаяся при сжатии гелиевого ядра и в водородном слоевом источнике, выходит наружу. Частично она поглощается водородной оболочкой, к-рая постепенно раздувается, уменьшая эфф. темп-ру при пост, светимости (участок BC).


По мере расширения оболочки и роста массы гелиевого ядра определяющую роль в поведении звезды начинают играть два фактора: конвекция, развивающаяся в оболочке, и вырождение, возникающее в ядре. Расширение оболочки и падение в ней темп-ры способствуют расширению внеш. конвективной зоны, к-рая имелась у звезды на ГП. Развитие конвекции приводит к улучшению теплоотвода, что, благодаря отрицат. теплоёмкости звезды, вызывает её сжатие, рост темп-ры, тепловыделения и светимости. Рост светимости способствует росту лучистого градиента темп-ры, что ещё больше усиливает конвекцию. T. о. возникает положительная обратная связь и конвекция захватывает значит, часть массы звезды, приближаясь к слоевому источнику. Светимость растёт, и звезда движется на ГРД от точки С к точке D (область красных гигантов).

По мере движения звезды к точке D происходит ускоренное горение водорода, масса изотермич. гелиевого ядра возрастает, что при условии равновесия приводит к росту его плотности. T. к. темп-pa ядра при этом близка к темп-ре водородного слоевого источника и увеличивается слабо, рост плотности приводит к вырождению ядра. Давление в нём практически перестаёт зависеть от темп-ры. В этих условиях небольшое увеличение темп-ры ядра, связанное с возгоранием гелия, почти не влияет на давление, звезда приобретает положит, теплоёмкость, к-рая обусловливает резкое увеличение скорости горения гелия (гелиевую вспышку) . Действительно, пока энерговыделение при горении гелия мало, звезда располагается на ГРД вблизи точки D и рост темп-ры и плотности приводит к росту энерговыделения, что в свою очередь увеличивает темп-ру. Возникает положительная обратная связь, приводящая к тепловой гелиевой вспышке в ядре. Развитие вспышки продолжается до тех пор, пока рост темп-ры не снимет вырождение в ядре, звезда приобретёт "нормальную" отрицат. теплоёмкость и дальнейшее горение гелия продолжится спокойно в невырожденном ядре. Особенностью гелиевой вспышки является то, что она запрятана в глубине звезды и внеш. проявления её почти отсутствуют. После образования невырожденного ядра звезда спускается вниз от точки D и поворачивает налево к линии EF (горизонтальная ветвь гигантов), где находится до тех пор, пока гелий в ядре превращается в углерод. Вновь образованное углеродное ядро становится вырожденным, возгорание гелия в слоевом источнике и образование двухслойного гелий-водородного горящего слоя приводят к развитию конвекции в оболочке, и вновь повторяется та же схема развития, причём звезда возвращается почти вдоль той же линии к точке D .

В отличие от водородных слоевых источников, где горение идёт спокойно, гелиевые слоевые источники неустойчивы относительно развития тепловой вспышки. Природа этой вспышки, так же, как и вспышки в гелиевом ядре, связана с положит. теплоёмкостью, ведущей к положительной обратной связи. Однако в слое положит, теплоёмкость обусловлена не вырождением (гелий здесь не вырожден), а геометрией области горения (тонкий слой) и быстрым ростом скорости энерговыделения с увеличением темп-ры при горении гелия. Механизм неустойчивости слоевого горения не столь очевиден, как в случае вспышки в вырожденном ядре, и требует для своего обоснования детальных расчётов.

T. о., в окрестности точки D располагаются спокойные звёзды с гелиевыми ядрами и вспыхивающие - с углеродными. Вспышки способствуют истечению вещества, поэтому по мере роста углеродного ядра полная масса звезды уменьшается. После неск. сотен вспышек (цифра примерная, т. к. никому не удалось последовательно просчитать столь много вспышек) в результате быстрого истечения вещества и роста ядра масса над гелиево-водородным слоевым источником уменьшается настолько, что при той же светимости начинаются быстрое оседание оболочки на ядро, рост эфф. темп-ры и. следовательно, движение звезды влево. После исчерпания горючего в слоевых источниках (точка G) светимость поддерживается только за счёт теплоёмкости ядра, к-рое быстро остывает, звезда движется по ГРД вниз и превращается в белый карлик (точка H) . На этой стадии звезда находится вплоть до полного остывания. Наблюдения свидетельствуют о том, что истечение вещества вблизи точки D происходит неравномерно и значит, доля массы сбрасывается непосредственно перед началом движения звезды влево, образуя планетарную туманность .

Звёзды с . У звёзд свремя жизни на ГП превышает космологич. время (2*10 10 лет), и все они либо находятся на ГП, либо движутся к ней. В звёздах свыгорание водорода сопровождается ростом плотности в центре звезды и приближением ядра к вырожденному состоянию. Пригелиевое ядро, образующееся после выгорания водорода, становится вырожденным, а оболочка сильно раздувается, приводя к росту светимости и уменьшению поверхностной темп-ры (рис. 2). Звезда становится красным гигантом. Вырожденное ядро неустойчиво относительно гелиевой вспышки. Гелиевая вспышка в ядре приводит к его расширению и снятию вырождения; при этом сгорает не более 1% гелия.

Рис. 2. Эволюционные треки звёзд [с начальным химическим составомX z (содержание элементов тяжелее гелия) - = 0,03] от главной последовательности до гелиевой вспышки (для М = 0,8 и 1,5) или до возгорания углерода в центре (для Цифры указывают массу звезды вточки соответствуют главной последовательности и моментам возгорания гелия и углерода в ядре.


Звёзды небольшой массы с невырожденным гелиевым ядром и водородной оболочкой после гелиевой вспышки располагаются на ГРД вблизи горизонтальной ветви гигантов (ГВГ, рис. 3). На этой ветви звёзды представляют собой гелиевые ядра массой окружённые водородными оболочками разл. массы. После выгорания гелия в ядре начинается его быстрое сжатие до загорания гелиевого слоевого источника. Звезда на ГРД движется вверх и направо к линии, называемой асимптотич. ветвью гигантов (АВГ). На этой линии звезда состоит из вырожденного углеродно-кислородного ядра и двух слоевых источников (гелиевого и водородного), расположенных очень близко друг от друга. Над ними располагается водородная оболочка, масса к-рой может достигать Удивительным свойством звёзд на АВГ является то, что их положение на ГРД зависит только от массы углеродного ядра и практически не зависит от массы водородной оболочки. Светимость L звезды на АВГ определяется ф-лой


где М сo - масса углеродно-кислородного ядра. С ростом MCO звезда движется на ГРД вверх по АВГ. Это движение не является спокойным.


Рис. 3. Огрублённые эволюционные треки звёзд с начальными массами M = 1. 5, 25 Жирные линии соответствуют основным стадиям горения в ядре (рядом указаны соответствующие реакции). Для М<2 . 3происходит гелиевая вспышка в ядре (ГВЯ), далее начинается спокойное горение 4 He в ядре. После выгорания 4 He в ядре звезда переходит на раннюю асимптотическую ветвь гигантов (РАНГ). Когда ядро, в котором выгорел 4 He, достигает массы начинаются тепловые вспышки (ТВ) в гелиевом слоевом источнике. На стадии АВГ происходит потеря массы, которая заканчивается быстрым сбросом остатка водородной оболочки в виде планетарной туманности (ПТ). СО-ядро массой превращается в белый карлик. Эволюция более массивных звёзд сна стадии АВГ и дальше происходит аналогично. Кружком с лучами отмечено начало свечения планетарной туманности, когда T , звезды достигает 3 · 10 4 К и начинается ионизация газа в ПТ.


Рис. 4. Эволюционный трек звезды, превращающейся в белый карлик, с начиная от РАВГ; начальный состав:
. Точками даны положения звезды перед очередной тепловой вспышкой, указан её номер. OM - огибающая минимумов светимости при вспышках. Показаны треки звезды в области минимумов вспышек № 7, 9 и 10. Заштрихованы участки на ГП и в области горения гелия в ядре (ГТЯ), где даны приближённые эволюционные треки звёзд с Штриховая линия слева соответствует звезде постоянного радиуса

Малая толщина слоевых источников приводит к тепловым вспышкам (ТВ). Кол-во вспышек при движении по АВГ растёт с ростом массы водородной оболочки и может превышать неск. тысяч. Время между вспышкамитакже зависит в основном от массы ядра и определяется выражением


В годах), а светимость звезды в максимуме вспышки


Характерным свойством звёзд на АВГ является интенсивная потеря массы. Считается, что звёзды стеряют всю водородную оболочку и превращаются в белый карлик массойМеханизм потери массы не вполне ясен, но считается (гл. обр. на основе данных наблюдений), что б. ч. массы теряется в виде спокойного истечения, а оставшаяся часть (неск. десятых долейсбрасывается быстро в виде сферич. оболочки, наблюдаемой как планетарная туманность. Эволюц. трек ядра планетарной туманности с, превращающегося в белый карлик, приведён на рис. 4 (схематически такие треки показаны на рис. 3). Времена на штриховых отметках t i и соответствующие массы водородных оболочек M об, равны


Звёзды с массой . У таких звёзд масса ядра достигает. При сжатии ядра в нём зажигается углерод. Горение углерода в вырожденном ядре звезды с неустойчиво, реакция приводит к взрыву и полному разлёту звезды. Возможно, подобные взрывы вызывают наблюдаемые вспышки сверхновых звёзд первого типа. В ядрах звёзд с нач. массами, превышающими(вплоть доуглеродное ядро не вырождено. Вырождение наступает на стадии образования ядра из Для

Вырожденное ядро сжимается в результате нейтронизацш вещества 24 Mg, сжатие переходит в гравитац. коллапс. При этом ядро разогревается за счёт неравновесной нейтронизации. В звёздах массой в вырожденном ядре развивается тепловая неустойчивость, к-рая, как и при гелиевой вспышке, ведёт к снятию вырождения и переходу в режим спокойного горения вплоть до появления 56 Fe в центре звезды. Судьба такой звезды схожа с судьбой более массивных звёзд.

Эволюция массивных звёзд . Горение в центр, областях этих звёзд проходит в отсутствие вырождения вплоть до образования железного ядра. Расчётные эволюц. треки массивных звёзд после образования гелиевого ядра чувствительны к физ. предположениям, методу расчёта и очень разнообразны. Это проявляется в разл. форме петель на ГРД (аналогичных петлям для на рис. 2), а также в значениях эфф. темп-ры звезды на стадии горения гелия. Различие физ. предположений состоит в выборе критерия конвективной неустойчивости, к-рый учитывает [критерий П. Леду (P. Ledoux)] или не учитывает [критерий К. Шварцшильда (К. Schwarzschild) ] стабилизирующую роль градиента хим. состава. С этим связано поведение т. н. полуконвективной зоны, к-рая появляется над конвективным ядром у звёзд сна стадии горения водорода и имеет очень небольшое превышение градиента темп-ры над адиабатическим. В моделях, учитывающих градиент хим. состава, зона полуконвекции отделена от конвективного ядра лучистым слоем, что препятствует перемешиванию. Если же использовать критерий Шварцшильда, то возникает частичное перемешивание и условия эволюции существенно меняются. Горение гелия происходит в области голубых сверхгигантов приа в случае критерия Леду гелий выгорает в области красных сверхгигантов с
С ростом массы растёт величинагде критич. светимость

При L = Lc сила светового давления на электроны уравновешивает силу гравитац. притяжения атомных ядер. В процессе движения звезды на ГРД направо в область красных сверхгигантов после образования гелиевого ядра в оболочке, где возникают зоны неполной ионизации гелия и водорода, резко возрастает непрозрачность и L/L c становится больше единицы. На этой стадии возможно резкое увеличение скорости потери массы звездой, так что может потеряться вся водородная оболочка. Наблюдения показывают существование очень ярких гелиевых звёзд типа Вольфа - Райе (WR, см. Вольфа - Райе звёзды у ),к-рых происходит мощное истечение вещества с потоком массыНа стадии образования WR-звёзд поток массы мог быть значительно больше.

Расчёт эволюции массивных звёзд требует самосогласованного учёта потери массы, так чтобы величина M получалась в расчётах однозначно, как L, R, T э ,. T. к. время потери массы M/M много больше гидродинамич. времени звездызвезда на стадии истечения может быть представлена в виде статич. ядра и стационарно истекающей оболочки, масса к-рой внутри критич. радиуса потока много меньше массы звезды; на критич. радиусе r к скорость v к равна (см. Звёздный ветер ).Скорость потока быстро падает по мере перехода к плотным внутр. слоям звезды, и оболочка плавно переходит в статич. ядро. Сделаны лишь предварит, расчёты эволюции с самосогласованным учётом потери массы, хотя имеется много эволюц. расчётов с феноменологич. учётом потери массы, типа зависимостей

(L, R, M в единицах


Рис. 5. Эволюционные треки звёзд с массами 15 и 25BB" и BC -области горения гелия в ядре; CD - горение в двойном (H - Не) слоевом источнике; DE -горение углерода. Расчёты доведены до точки потери устойчивости (указана крестом в кружке), штриховые треки соответствуют не вполне уверенным расчётам.

Расчёт эволюции двух звёзд с пост, массами (M= 15 и вплоть до образования железного ядра в состоянии предсверхновой представлен на рис. 5. После возгорания углерода эволюция ядра идёт очень быстро, ввиду роста скорости нейтринных потерь, так что состояние оболочки почти не меняется и звезда мало движется по ГРД вплоть до начала коллапса. Наблюдения сверхновой 1987А в Большом Магеллановом Облаке показали, что предсверхновая здесь представляла собой голубой, а не красный сверхгигант, как показано на рис. 5. Это может быть связано с тем, что либо произошёл сброс значит, части водородной оболочки, либо звезда эволюционировала на треке вдоль петель, заходящих в голубую область. Если углерод загорелся в тот момент, когда звезда находилась в голубой области, её видимое положение на ГРД оставалось почти неизменным вплоть до потери устойчивости и вспышки сверхновой. Сравнение разл. расчётов показывает, что появление петель носит стохастич. характер, поэтому можно говорить лишь о вероятности расположения звезды в области голубых, жёлтых или красных сверхгигантов в состоянии предсверхновой.

Звёзды, превратившиеся в красные и жёлтые гиганты и сверхгиганты, после образования гелиевого ядра становятся в определ. области неустойчивыми относительно раскачки механич. и наблюдаются как переменные звёзды с регулярными колебаниями блеска (цефеиды и звёзды типа RR Лиры). Осн. причиной возбуждения колебаний в этих звёздах является аномальное поведение непрозрачности в зоне неполной ионизации гелия, толщина к-рой растёт с ростом темп-ры (см. Пульсации звёзд ).Вне ГП расположены и др. типы переменных звёзд с регулярной, полурегулярной и нерегулярной переменностью. Причиной переменности регулярных переменных, находящихся на стадиях Э. з. до и после ГП, является наличие мощных конвективных оболочек, приводящих к генерации ударных волн при звёздных вспышках, аналогичных вспышкам на Солнце , но на много порядков более мощных.

Предсверхновые и сверхновые

Сверхновые второго типа (с линиями водорода в спектрах и остатками в виде пульсаров )являются продуктом эволюции массивных звёзд сЯдра этих звёзд теряют устойчивость и коллапсируют после увеличения центр, темп-ры настолько, что начинается диссоциация ядер 56 Fe и адиабатич. показательстановится меньше 4/3. Значение g, усреднённое по звездеопределяет её гидродинамич. устойчивость. Неустойчивость имеет место при


В выражении член справа связан с эффектами общей теории относительности и равен нулю в ньютоновской теории, в к-ройотделяет устойчивые состояния от неустойчивых. Согласно результатам расчётов, представленным на рис. 5. ядра звёзд в точке вскоре после потери устойчивости характеризуются параметрами:


Здесь M , - масса ядра; Т с и r c - центральные темп-ра и плотность,-нейтринная светимость,-фотонная светимость,-радиус фотосферы; цифры в скобках указывают порядок величины. У звёзд массой ок. 8 образуется вырожденное углеродно-кислородное ядро массой 1,39, к-рое перед тепловой вспышкой характеризуется след, параметрами: (r я, - радиус ядра). Тепловые вспышки звёздных ядер, ведущие к полному разлёту звезды и выделению энергии ~ 10 51 эрг, связывают с наблюдаемыми вспышками сверхновых типа I, в спектрах к-рых водород не наблюдается, а в остатках взрыва не найдены пульсары. Вспышки сверхновых типапромежуточных между типами I и II (линии водорода почти не видны, но нейтронные звёзды могут образоваться), связаны, видимо, с потерей устойчивости в ядрах звёзд промежуточной массы или с вхождением этих звёзд в двойные системы.

Расчёты гидродинамич. коллапса ядер массивных звёзд показали, что подавляющая частьвыделяющейся гравитац. энергииэрг) уносится нейтрино. Внутр.части звезды оказываются непрозрачными для рождающихся там нейтрино, внутри звезды формируется нейтринная фотосфера. Нейтринный нагрев падающей оболочки, выгорание в ней оставшегося ядерного горючего во время коллапса, а также отскок падающей оболочки от поверхности образовавшейся нейтронной звезды оказываются недостаточными для того, чтобы выбросить вещество с ки-нетич. энергией эрг (характерной для сверхновых). Осн. причины этого заключаются в том, что нейтринный поток тормозит падение оболочки, а образующаяся при отскоке оболочки ударная волна дополнительно ослабляется из-за затраты большей части её энергии на диссоциацию в оболочке атомных ядер железного пика (т. е. ядер с массовыми числами, близкими к 56). Быстрые потери энергии за счёт испускания нейтрино из области нейтринной фотосферы приводят к увеличению градиента темп-ры и развитию конвекции. Это может существенно увеличить энергию каждого вылетающего нейтрино и соответственно сечение его взаимодействия с веществом, что способствует взрыву.

Энергия взрыва сверхновой может черпаться из энергии вращения образующейся нейтронной звезды, к-рая достигает 10 53 эрг. Важнейшую роль в трансформации энергии вращения в энергию взрыва играет магн. поле. Поэтому такой взрыв носит назв. магниторотационного. В дифференциально вращающейся оболочке вокруг нейтронной звезды происходит линейное по времени усиление азимутального магн. поля за счёт наматывания силовых линий. Когда магн. давление достаточно возрастёт, формируется , к-рая усиливается при распространении в среде со спадающей плотностью и за счёт работы магн. поршня. Расчёты показывают, что ~3-5% энергии вращения может быть преобразовано в кинетич. энергию выброса. Этого достаточно для объяснения наблюдаемых сверхновых. В отличие от механизмов взрыва сферически-симметричных звёзд, где энергия выделяется в доли секунды, при магниторотационном взрыве выделение энергии может затянуться на неск. часов; при этом период вращения образующейся нейтронной звезды может превышать 10 миллисекунд (скорость вращения будет <~ 1/10 предельной, совместимой с устойчивостью нейтронной звезды).

Последние стадии эволюции звёзд

Звезда, у к-рой отсутствуют источники энергии, светит за счёт остывания, а равновесие в ней поддерживается давлением вырожденных электронов или нейтронов. Фун-дам. фактом является наличие предела массы у холодных звёзд, связанного с тем, что с ростом плотности наступает релятивистское вырождение электронов , а затем и нейтронов. Поэтому достаточно массивные звёзды теряют устойчивость и переходят в состояние релятивистского коллапса с образованием чёрной дыры. При плотностях г/см 3 вещество состоит из электронов и ядер. электроновуже при г/см 3 (m z - число нуклонов на электрон), поэтому можно использовать ур-ние состояния релятивистского вырожденного электронного газа

Для баротропного ур-ния состояния Р = Р(р )равновесие звезды определяется ур-ниями (1) и (2). В случае политропыиз (1) и (2) следует ур-ние равновесия:


масса звезды


Из ур-ния (9) следует, что примасса звезды независит от r с. Для ур-ния состояния (8) масса

Рис. 6. Зависимость массы от центральной плотности для равновесных холодных звёзд. Верхняя штриховая линия соответствует уравнению состояния для "чистых" нейтронов, нижняя-с учётом гиперонов.


Масса звёзд, у к-рых давление определяется вырожденными электронами, не может превысить (Чандрасекара предел) . Звёзды, в к-рых преобладает давление вырожденных электронов, наз. белыми карликами за их небольшие размеры и горячую поверхность. На графике для холодных звёзд (рис. 6) белые карлики расположены левее первого максимума. Для железного состава = 28/13; с учётом нейтронизации и кулоновских поправок к ур-нию состояния макс, масса железного белого карлика равна примерно когда центр, плотность ~1,4x При большей плотности m z растёт из-за нейтронизации и равновесная масса падает. При этом равновесные модели неустойчивы, а устойчивость восстанавливается, когда осн. вклад в давление начинают давать нерелятивистские вырожденные нейтроны (минимум на рис. 6, гдеПри столь высоких плотностях важную роль играет ядерное взаимодействие, поэтому в устойчивых нейтронных звёздах (между минимумом и вторым максимумом) нейтронный газ не является идеальным. Релятивистское вырождение нейтронов и эффекты ОТО приводят к потере устойчивости. В результате предельная масса нейтронной звезды (для реалистич. ур-ний состояния)

Звёзды с нач. массойтеряют вещество в процессе эволюции на АВГ и превращаются в белые карлики. Более массивные звёзды, не успевшие потерять массу и теряющие устойчивость, либо разлетаются в результате взрывного горения углерода, либо превращаются в нейтронные звёзды разл. типов. Если излишек массы не сбрасывается при коллапсе, то происходит релятивистский коллапс ядра си образование чёрной дыры. Предшественниками чёрных дыр являются наиб, массивные звёзды с нач. массами

Лит.: Франк-Каменецкий Д. А., Физические процессы внутри звезд, M., 1959; Шварцшильд М., Строение и эволюция звезд, пер. с англ., M., 1961; Внутреннее строение звезд, под ред. Л. Аллера. Д. M. Мак-Лафлина, пер. с англ., M., 1970; Масевич А. Г., Тутуков А. В., Эволюция звезд; теория и наблюдения, M., 1988; Бисноватый-Коган Г. С., Физические вопросы теории звездной эволюции. M.. 1989. Г . С. Бисноватый-Коган .

Хотя по человеческой шкале времени звезды и кажутся вечными, они, подобно всему сущему в природе, рождаются, живут и умирают. Согласно общепринятой гипотезе газопылевого облака звезда зарождается в результате гравитационного сжатия межзвездного газопылевого облака. По мере уплотнения такого облака сначала образуется протозвезда, температура в ее центре неуклонно растет, пока не достигает предела, необходимого для того, чтобы скорость теплового движения частиц превысила порог, после которого протоны способны преодолеть макроскопические силы взаимного электростатического отталкивания (см. Закон Кулона) и вступить в реакцию термоядерного синтеза (см. Ядерный распад и синтез).

В результате многоступенчатой реакции термоядерного синтеза из четырех протонов в конечном итоге образуется ядро гелия (2 протона + 2 нейтрона) и выделяется целый фонтан разнообразных элементарных частиц . В конечном состоянии суммарная масса образовавшихся частиц меньше массы четырех исходных протонов, а значит, в процессе реакции выделяется свободная энергия (см. Теория относительности). Из-за этого внутренне ядро новорожденной звезды быстро разогревается до сверхвысоких температур, и его избыточная энергия начинает выплескиваться по направлению к ее менее горячей поверхности — и наружу. Одновременно давление в центре звезды начинает расти (см. Уравнение состояния идеального газа). Таким образом, «сжигая» водород в процессе термоядерной реакции, звезда не дает силам гравитационного притяжения сжать себя до сверхплотного состояния, противопоставляя гравитационному коллапсу непрерывно возобновляемое внутреннее термическое давление, в результате чего возникает устойчивое энергетическое равновесие. О звездах на стадии активного сжигания водорода говорят, что они находятся на «основной фазе» своего жизненного цикла или эволюции (см. Диаграмма Герцшпрунга—Рассела). Превращение одних химических элементов в другие внутри звезды называют ядерным синтезом или нуклеосинтезом.

В частности, Солнце находится на активной стадии сжигания водорода в процессе активного нуклеосинтеза уже около 5 миллиардов лет, и запасов водорода в ядре для его продолжения нашему светилу должно хватить еще на 5,5 миллиарда лет. Чем массивнее звезда, тем большим запасом водородного топлива она располагает, но для противодействия силам гравитационного коллапса ей приходится сжигать водород с интенсивностью, превосходящей по темпу роста темп роста запасов водорода по мере увеличения массы звезды. Таким образом, чем массивнее звезда, тем короче время ее жизни, определяемое исчерпанием запасов водорода, и самые крупные звезды в буквальном смысле сгорают за «какие-то» десятки миллионов лет. Самые мелкие звезды, с другой стороны, «безбедно» живут сотни миллиардов лет. Так что по этой шкале наше Солнце относится к «крепким середнякам».

Рано или поздно, однако, любая звезда израсходует весь пригодный для сжигания в своей термоядерной топке водород. Что дальше? Это также зависит от массы звезды. Солнце (и все звезды, не превышающие его по массе более чем в восемь раз) заканчиваю свою жизнь весьма банальным образом. По мере истощения запасов водорода в недрах звезды силы гравитационного сжатия, терпеливо ожидавшие этого часа с самого момента зарождения светила, начинают одерживать верх — и под их воздействием звезда начинает сжиматься и уплотняться. Этот процесс приводит к двоякому эффекту: Температура в слоях непосредственно вокруг ядра звезды повышается до уровня, при котором содержащийся там водород вступает, наконец, в реакцию термоядерного синтеза с образованием гелия. В то же время температура в самом ядре, состоящем теперь практически из одного гелия, повышается настолько, что уже сам гелий — своего рода «пепел» затухающей первичной реакции нуклеосинтеза — вступает в новую реакцию термоядерного синтеза: из трех ядер гелия образуется одно ядро углерода. Этот процесс вторичной реакции термоядерного синтеза, топливом для которого служат продукты первичной реакции, — один из ключевых моментов жизненного цикла звезд.

При вторичном сгорании гелия в ядре звезды выделяется так много энергии, что звезда начинает буквально раздуваться. В частности, оболочка Солнца на этой стадии жизни расширится за пределы орбиты Венеры. При этом совокупная энергия излучения звезды остается примерно на том же уровне, что и в течение основной фазы ее жизни, но, поскольку излучается эта энергия теперь через значительно бо_льшую площадь поверхности, внешний слой звезды остывает до красной части спектра. Звезда превращается в красный гигант.

Для звезд класса Солнца после истощения топлива, питающего вторичную реакцию нуклеосинтеза, снова наступает стадия гравитационного коллапса — на этот раз окончательного. Температура внутри ядра больше не способна подняться до уровня, необходимого для начала термоядерной реакции следующего уровня. Поэтому звезда сжимается до тех пор, пока силы гравитационного притяжения не будут уравновешены следующим силовым барьером. В его роли выступает давление вырожденного электронного газа (см. Предел Чандрасекара). Электроны, до этой стадии игравшие роль безработных статистов в эволюции звезды, не участвуя в реакциях ядерного синтеза и свободно перемещаясь между ядрами, находящимися в процессе синтеза, на определенной стадии сжатия оказываются лишенными «жизненного пространства» и начинают «сопротивляться» дальнейшему гравитационному сжатию звезды. Состояние звезды стабилизируется, и она превращается в вырожденного белого карлика, который будет излучать в пространство остаточное тепло, пока не остынет окончательно.

Звезды более массивные, нежели Солнце, ждет куда более зрелищный конец. После сгорания гелия их масса при сжатии оказывается достаточной для разогрева ядра и оболочки до температур, необходимых для запуска следующих реакций нуклеосинтеза — углерода, затем кремния, магния — и так далее, по мере роста ядерных масс. При этом при начале каждой новой реакции в ядре звезды предыдущая продолжается в ее оболочке. На самом деле, все химические элементы вплоть до железа, из которых состоит Вселенная, образовались именно в результате нуклеосинтеза в недрах умирающих звезд этого типа. Но железо — это предел; оно не может служить топливом для реакций ядерного синтеза или распада ни при каких температурах и давлениях, поскольку как для его распада, так и для добавления к нему дополнительных нуклонов необходим приток внешней энергии. В результате массивная звезда постепенно накапливает внутри себя железное ядро, не способное послужить топливом ни для каких дальнейших ядерных реакций.

Как только температура и давление внутри ядра достигают определенного уровня, электроны начинают вступать во взаимодействие с протонами ядер железа, в результате чего образуются нейтроны. И за очень короткий отрезок времени — некоторые теоретики полагают, что на это уходят считанные секунды, — свободные на протяжении всей предыдущей эволюции звезды электроны буквально растворяются в протонах ядер железа, всё вещество ядра звезды превращается в сплошной сгусток нейтронов и начинает стремительно сжиматься в гравитационном коллапсе, поскольку противодействовавшее ему давление вырожденного электронного газа падает до нуля. Внешняя оболочка звезды, из под которой оказывается выбита всякая опора, обрушивается к центру. Энергия столкновения обрушившейся внешней оболочки с нейтронным ядром столь высока, что она с огромной скоростью отскакивает и разлетается во все стороны от ядра — и звезда буквально взрывается в ослепительной вспышке сверхновой звезды . За считанные секунды при вспышке сверхновой может выделиться в пространство больше энергии, чем выделяют за это же время все звезды галактики вместе взятые.

После вспышки сверхновой и разлета оболочки у звезд массой порядка 10-30 солнечных масс продолжающийся гравитационный коллапс приводит к образованию нейтронной звезды, вещество которой сжимается до тех пор, пока не начинает давать о себе знать давление вырожденных нейтронов — иными словами, теперь уже нейтроны (подобно тому, как ранее это делали электроны) начинают противиться дальнейшему сжатию, требуя себе жизненного пространства. Это обычно происходит по достижении звездой размеров около 15 км в диаметре. В результате образуется быстро вращающаяся нейтронная звезда, испускающая электромагнитные импульсы с частотой ее вращения; такие звезды называются пульсарами. Наконец, если масса ядра звезды превышает 30 солнечных масс, ничто не в силах остановить ее дальнейший гравитационный коллапс, и в результате вспышки сверхновой образуется

Изучение звёздной эволюции невозможно наблюдением лишь за одной звездой - многие изменения в звёздах протекают слишком медленно, чтобы быть замеченными даже по прошествии многих веков. Поэтому учёные изучают множество звёзд, каждая из которых находится на определённой стадии жизненного цикла. За последние несколько десятилетий широкое распространение в астрофизике получило моделирование структуры звёзд с использованием вычислительной техники .

Энциклопедичный YouTube

    1 / 5

    ✪ Звёзды и звёздная эволюция (рассказывает астрофизик Сергей Попов)

    ✪ Звёзды и звёздная эволюция (рассказывают Сергей Попов и Илгонис Вилкс)

    ✪ Эволюция звезд. Эволюция голубого гиганта за 3 минуты

    ✪ С. А. Ламзин - "Звездная эволюция"

    ✪ Сурдин В.Г. Звёздная эволюция Часть 1

    Субтитры

Термоядерный синтез в недрах звёзд

Молодые звёзды

Процесс формирования звёзд можно описать единым образом, но последующие стадии эволюции звезды почти полностью зависят от её массы, и лишь в самом конце эволюции звезды свою роль может сыграть её химический состав.

Молодые звёзды малой массы

Молодые звёзды малой массы (до трёх масс Солнца) [ ] , находящиеся на подходе к главной последовательности , полностью конвективны, - процесс конвекции охватывает все тело звезды. Это ещё по сути протозвёзды, в центрах которых только-только начинаются ядерные реакции, и всё излучение происходит, в основном, из-за гравитационного сжатия. До тех пор пока гидростатическое равновесие не установится, светимость звезды убывает при неизменной эффективной температуре. На диаграмме Герцшпрунга-Рассела такие звёзды формируют почти вертикальный трек, называемый треком Хаяши . По мере замедления сжатия молодая звезда приближается к главной последовательности. Объекты такого типа ассоциируются со звёздами типа T Тельца .

В это время у звёзд массой больше 0,8 масс Солнца ядро становится прозрачным для излучения, и лучистый перенос энергии в ядре становится преобладающим, поскольку конвекция все больше затрудняется всё большим уплотнением звездного вещества. Во внешних же слоях тела звезды превалирует конвективный перенос энергии.

О том, какими характеристиками в момент попадания на главную последовательность обладают звёзды меньшей массы, достоверно неизвестно, так как время нахождения этих звёзд в разряде молодых превышает возраст Вселенной [ ] . Все представления об эволюции этих звёзд базируются только на численных расчётах и математическом моделировании.

По мере сжатия звезды начинает расти давление вырожденного электронного газа и при достижении определённого радиуса звезды сжатие останавливается, что приводит к остановке дальнейшего роста температуры в ядре звезды, вызываемого сжатием, а затем и к её снижению. Для звёзд меньше 0,0767 масс Солнца это не происходит: выделяющейся в ходе ядерных реакций энергии никогда не хватит, чтобы уравновесить внутреннее давление и гравитационное сжатие. Такие «недозвёзды» излучают энергии больше, чем образуется в процессе термоядерных реакций, и относятся к так называемым коричневым карликам . Их судьба - постоянное сжатие, пока давление вырожденного газа не остановит его, и, затем, постепенное остывание с прекращением всех начавшихся термоядерных реакций.

Молодые звёзды промежуточной массы

Молодые звёзды промежуточной массы (от 2 до 8 масс Солнца) [ ] качественно эволюционируют точно так же, как и их меньшие сестры и братья, за тем исключением, что в них нет конвективных зон вплоть до главной последовательности.

Объекты этого типа ассоциируются с т. н. звёздами Ae\Be Хербига неправильными переменными спектрального класса B-F0. У них также наблюдаются диски и биполярные джеты. Скорость истечения вещества с поверхности, светимость и эффективная температура существенно выше, чем для T Тельца , поэтому они эффективно нагревают и рассеивают остатки протозвёздного облака.

Молодые звёзды с массой больше 8 солнечных масс

Звезды с такими массами уже обладают характеристиками нормальных звезд, поскольку прошли все промежуточные стадии и смогли достичь такой скорости ядерных реакций, которая компенсировала потери энергии на излучение, пока накапливалась масса для достижения гидростатического равновесия ядра. У этих звёзд истечение массы и светимость настолько велики, что не просто останавливают гравитационный коллапс ещё не ставших частью звезды внешних областей молекулярного облака, но, наоборот, разгоняют их прочь. Таким образом, масса образовавшейся звезды заметно меньше массы протозвёздного облака. Скорее всего, этим и объясняется отсутствие в нашей галактике звёзд с массой больше, чем около 300 масс Солнца.

Середина жизненного цикла звезды

Среди звёзд встречается широкое многообразие цветов и размеров. По спектральному классу они варьируются от горячих голубых до холодных красных, по массе - от 0,0767 до около 300 Солнечных масс по последним оценкам. Светимость и цвет звезды зависят от температуры её поверхности, которая, в свою очередь, определяется её массой. Все новые звёзды «занимают своё место» на главной последовательности согласно своему химическому составу и массе. Речь, естественно, идёт не о физическом перемещении звезды - только о её положении на указанной диаграмме, зависящем от параметров звезды. Фактически, перемещение звезды по диаграмме отвечает лишь изменению параметров звезды.

Возобновившееся на новом уровне термоядерное «горение» вещества становится причиной чудовищного расширения звезды. Звезда «распухает», становясь очень «рыхлой», и её размер увеличивается приблизительно в 100 раз. Так звезда становится красным гигантом , а фаза горения гелия продолжается около нескольких миллионов лет. Практически все красные гиганты являются переменными звёздами .

Финальные стадии звёздной эволюции

Старые звёзды с малой массой

В настоящее время достоверно неизвестно, что происходит с лёгкими звёздами после истощения запаса водорода в их недрах. Поскольку возраст Вселенной составляет 13,7 миллиардов лет, что недостаточно для истощения запаса водородного топлива в таких звёздах, современные теории основываются на компьютерном моделировании процессов, происходящих в таких звёздах.

Некоторые звёзды могут синтезировать гелий лишь в некоторых активных зонах, что вызывает их нестабильность и сильные звёздные ветры . В этом случае образования планетарной туманности не происходит, и звезда лишь испаряется, становясь даже меньше, чем коричневый карлик [ ] .

Звезда с массой менее 0,5 солнечной не в состоянии преобразовывать гелий даже после того, как в её ядре прекратятся реакции с участием водорода, - масса такой звезды слишком мала для того, чтобы обеспечить новую фазу гравитационного сжатия до степени, достаточной для «поджига» гелия. К таким звёздам относятся красные карлики , такие как Проксима Центавра , срок пребывания которых на главной последовательности составляет от десятков миллиардов до десятков триллионов лет . После прекращения в их ядрах термоядерных реакций, они, постепенно остывая, будут продолжать слабо излучать в инфракрасном и микроволновом диапазонах электромагнитного спектра .

Звёзды среднего размера

При достижении звездой средней величины (от 0,4 до 3,4 солнечных масс) [ ] фазы красного гиганта в её ядре заканчивается водород, и начинаются реакции синтеза углерода из гелия . Этот процесс идет при более высоких температурах и поэтому поток энергии от ядра увеличивается и, как следствие, внешние слои звезды начинают расширяться. Начавшийся синтез углерода знаменует новую стадию в жизни звезды и продолжается некоторое время. Для звезды, по размеру близкой к Солнцу, этот процесс может занять около миллиарда лет.

Изменения в величине излучаемой энергии заставляют звезду пройти через периоды нестабильности, включающие в себя изменения размера, температуры поверхности и выпуск энергии. Выпуск энергии смещается в сторону низкочастотного излучения. Все это сопровождается нарастающей потерей массы вследствие сильных звёздных ветров и интенсивных пульсаций. Звёзды, находящиеся в этой фазе, получили название «звёзд позднего типа» (также «звезды-пенсионеры»), OH -IR звёзд или Мира-подобных звёзд, в зависимости от их точных характеристик. Выбрасываемый газ относительно богат производимыми в недрах звезды тяжёлыми элементами, такими как кислород и углерод . Газ образует расширяющуюся оболочку и охлаждается по мере удаления от звезды, делая возможным образование частиц пыли и молекул. При сильном инфракрасном излучении звезды-источника в таких оболочках формируются идеальные условия для активации космических мазеров .

Реакции термоядерного сжигания гелия очень чувствительны к температуре. Иногда это приводит к большой нестабильности. Возникают сильнейшие пульсации, которые в результате сообщают внешним слоям достаточное ускорение, чтобы быть сброшенными и превратиться в планетарную туманность . В центре такой туманности остаётся оголенное ядро звезды, в котором прекращаются термоядерные реакции, и оно, остывая, превращается в гелиевый белый карлик , как правило, имеющий массу до 0,5-0,6 Солнечных масс и диаметр порядка диаметра Земли .

Подавляющее большинство звёзд, и Солнце в том числе, завершают свою эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию . В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды , звезду называют белым карликом . Она лишена источников энергии и, постепенно остывая, становится невидимым черным карликом .

У звёзд более массивных, чем Солнце , давление вырожденных электронов не может остановить дальнейшее сжатие ядра, и электроны начинают «вдавливаться» в атомные ядра , что превращает протоны в нейтроны , между которыми не существуют силы электростатического отталкивания. Такая нейтронизация вещества приводит к тому, что размер звезды, которая теперь, фактически, представляет собой одно огромное атомное ядро, измеряется несколькими километрами, а плотность в 100 млн раз превышает плотность воды. Такой объект называют нейтронной звездой ; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Сверхмассивные звёзды

После того, как звезда с массой большей, чем пять Солнечных масс, входит в стадию красного сверхгиганта , её ядро под действием сил гравитации начинает сжиматься. По мере сжатия растут температура и плотность, и начинается новая последовательность термоядерных реакций. В таких реакциях синтезируются все более тяжёлые элементы: гелий, углерод, кислород, кремний и железо, что временно сдерживает коллапс ядра.

В результате по мере образования всё более тяжёлых элементов Периодической системы , из кремния синтезируется железо-56. На этой стадии дальнейший экзотермический термоядерный синтез становится невозможен, поскольку ядро железа-56 обладает максимальным дефектом массы и образование более тяжёлых ядер с выделением энергии невозможно. Поэтому когда железное ядро звезды достигает определённого размера, то давление в нём уже не в состоянии противостоять весу вышележащих слоёв звезды, и происходит незамедлительный коллапс ядра с нейтронизацией его вещества.

То, что происходит далее, пока до конца не ясно, но, в любом случае, происходящие процессы в считанные секунды приводят к взрыву сверхновой звезды невероятной мощности .

Сильные струи нейтрино и вращающееся магнитное поле выталкивают большую часть накопленного звездой материала [ ] - так называемые рассадочные элементы, включая железо и более лёгкие элементы. Разлетающаяся материя бомбардируется вылетающими из звездного ядра нейтронами, захватывая их и тем самым создавая набор элементов тяжелее железа, включая радиоактивные, вплоть до урана (а возможно, даже до калифорния). Таким образом, взрывы сверхновых объясняют наличие в межзвёздном веществе элементов тяжелее железа, но это не есть единственно возможный способ их образования, что, к примеру, демонстрируют технециевые звёзды .

Взрывная волна и струи нейтрино уносят вещество прочь от умирающей звезды [ ] в межзвёздное пространство. В последующем, остывая и перемещаясь по космосу, этот материал сверхновой может столкнуться с другим космическим «утилем» и, возможно, участвовать в образовании новых звёзд, планет или спутников.

Процессы, протекающие при образовании сверхновой, до сих пор изучаются, и пока в этом вопросе нет ясности. Также под вопросом остаётся момент, что же на самом деле остаётся от изначальной звезды. Тем не менее, рассматриваются два варианта: нейтронные звезды и чёрные дыры.

Нейтронные звёзды

Известно, что в некоторых сверхновых сильная гравитация в недрах сверхгиганта заставляет электроны поглотиться атомным ядром , где они, сливаясь с протонами , образуют нейтроны . Этот процесс называется нейтронизацией . Электромагнитные силы, разделяющие близлежащие ядра, исчезают. Ядро звезды теперь представляет собой плотный шар из атомных ядер и отдельных нейтронов.

Такие звёзды, известные, как нейтронные звёзды, чрезвычайно малы - не более размера крупного города, и имеют невообразимо высокую плотность. Период их обращения становится чрезвычайно мал по мере уменьшения размера звезды (благодаря сохранению момента импульса). Некоторые нейтронные звёзды совершают 600 оборотов в секунду. У некоторых из них угол между вектором излучения и осью вращения может быть таким, что Земля попадает в конус, образуемый этим излучением; в этом случае можно зафиксировать импульс излучения, повторяющийся через промежутки времени, равные периоду обращения звезды. Такие нейтронные звёзды получили название «пульсары », и стали первыми открытыми нейтронными звёздами.

Чёрные дыры

Далеко не все звезды, пройдя фазу взрыва сверхновой, становятся нейтронными звёздами. Если звезда обладает достаточно большой массой, то коллапс такой звезды продолжится, и сами нейтроны начнут обрушиваться внутрь, пока её радиус не станет меньше радиуса Шварцшильда . После этого звезда становится чёрной дырой.

Существование чёрных дыр было предсказано общей теорией относительности . Согласно этой теории,